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Abstract

We study the local bifurcation behavior of parametrically excited pipes conveying fluid near a 0:1 resonance. A major

goal of the analysis is to understand how energy may be transferred from the high-frequency mode to the low-frequency

mode in these systems. We study the bifurcations of pipe systems, focusing on the subharmonic resonance case. We

calculate the stability of the trivial solution, the bifurcating single-mode branches and their stability, and the existence

of multi-mode or periodic solutions. Regions where energy transfer may occur from high- to low-frequency modes are

identified. The numerical bifurcation analysis software AUTO97 is used to support the analytical results.

r 2005 Published by Elsevier Ltd.
1. Introduction

The problem of a supported pipe conveying pulsating fluid may model the nonlinear dynamics of a propellant line

carrying fluid with a nonconstant flow rate. Pipes conveying fluid may also be found in boilers, nuclear reactors, heat

exchangers, and steam generators. The primary goal of this and the second part (McDonald and Namachchivaya, 2005)

of the research is to investigate the local and global dynamics of parametrically excited pipes conveying fluid near a 0:1

resonance.

When the pipe oscillates, the flow of fluid through the pipe introduces a gyroscopic or Coriolis force which is

proportional to the fluid velocity. For small flow velocities, there is little coupling between the fluid and the structure.

Centrifugal forces in the pipe act in much the same way as compressive forces do in a beam. Hence, increasing the fluid

velocity decreases the effective stiffness of the pipe system, and may lead to buckling, also known as divergence. The

Coriolis forces act to restabilize the pipe after divergence before flutter finally destabilizes the pipe. For an undamped

system with no external tension or gravity, the classical result is that divergence of the first mode occurs at a

dimensionless critical velocity of uc ¼ p.
There are a multitude of boundary conditions that are possible for pipes conveying fluid. Two common sets of

boundary conditions are supported boundary conditions (simply supported or clamped), and cantilevered boundary

conditions. For undamped, supported pipes, the only source of energy input is the fluid dynamic forces. However, over

the course of any periodic motion of the pipe, the work done by these forces sums to zero, due to the fact that the

displacement at both ends of the pipe is zero (Benjamin, 1961). Thus, supported pipes are conservative systems in the
e front matter r 2005 Published by Elsevier Ltd.

uidstructs.2005.07.019

ing author. Tel.: +1217 333 2651; fax: +1 217 244 0720.

ess: navam@uiuc.edu (N.S. Namachchivaya).

www.elsevier.com/locate/jfs


ARTICLE IN PRESS
R.J. McDonald, N.S. Namachchivaya / Journal of Fluids and Structures 21 (2005) 629–664630
absence of frictional forces. Cantilevered pipes, on the other hand, are nonconservative systems, since the displacement

of the pipe at one end is nonzero, and hence the energy change in the pipe is nonzero. Another difference between these

two sets of boundary conditions is that systems with supported boundary conditions destabilize through divergence,

i.e., a simple bifurcation, while systems with cantilevered boundary conditions destabilize through flutter, i.e., a Hopf

bifurcation.

A review of much of the work that has been done on this problem is given by Paidoussis and Li (1993). Some of the

earliest work on pipes conveying fluid was done by Ashley and Haviland (1950), who attempted to explain vibrations in

the Trans-Arabian Pipeline. The earliest studies of the linear stability of pipes supported at both ends were done in the

early 1950s by Feodos’ev (1951), Housner (1952), and Niordson (1953). Other important work on the linear stability of

this problem was done by Benjamin (1961), and Paidoussis and Issid (1974). The first study on the nonlinear dynamics

of pipes conveying steady fluid flow was done by Thurman and Mote (1969), who showed that the importance of

nonlinearities increases as the flow velocity becomes larger. Other important nonlinear studies of this problem include

Holmes (1977), Ch’ng (1978) and Rousselet and Herrmann (1977). Most of these studies considered only steady-flow

velocities. Work on the problem of pipes with parametrically excited flow velocities has been done by Paidoussis and

Sundararajan (1975), Ariaratnam and Namachchivaya (1986), Namachchivaya (1989), and Namachchivaya and Tien

(1989a,b).

In this paper, we study the local bifurcations of simply supported damped pipe systems near the critical velocity uc,

when the fluid velocity is also pulsating. The goal of our analysis is to understand the effect that the forcing and

damping has on this gyroscopic system in the neighborhood of the 0:1 critical point. We determine the stability of the

trivial solution, the location and type of primary bifurcation points, the nature of any bifurcating solutions, and the

location and type of any secondary bifurcation points and branches. In addition to an analytical analysis, we will use

the numerical bifurcation package AUTO97 (Doedel et al., 1997) to understand the dynamics of the system for more

complicated systems. For simplicity, we concentrate on the subharmonic resonance case, since the lack of coupling

between the modes from the forcing makes analytical solution of the bifurcating branches simpler. Another goal of our

analysis is to understand where energy transfer can occur from the high-frequency second mode to the low-frequency

first mode.

In Section 2, we present the finite-dimensional equations of motion for a pipe conveying fluid with a parametrically

excited flow rate. The true continuum model is a PDE and it is derived in the appendix. The parametric excitation enters

the system through a periodically pulsating fluid flow rate, given by u ¼ u0ð1þ cos ntÞ. We also include dissipation

through Kelvin–Voigt damping, both linear and nonlinear. In Section 3, We introduce unfolding parameters and

detuning parameters to observe the behavior of the system near critical states. We derive the equations of motion in

both Lagrangian and Hamiltonian form. In Section 4, we calculate the normal form for the pipe system near the critical

point at which the system possesses a nonsemisimple double zero eigenvalue. Bifurcation parameters are introduced

into the equations off motion to capture the behavior of the system near the critical 0:1 resonance, and near two critical

forcing frequencies. In Section 5, we study the local dynamics of the parametrically excited pipe. We also attempt to

understand how the presence of damping, linear and nonlinear, interacts with the forcing. We identify various fixed

points and periodic solutions for the system, and determine the stability and bifurcation behavior of these equilibria.

The analytical analysis is complemented by the use of the numerical bifurcation package AUTO97 (Doedel et al., 1997).

Finally in Section 6, we summarize the results and interpret them in terms of the physical motion of pipe conveying

pulsating fluid.
2. Finite-dimensional equations of motion

The continuum equation of motion of a simply supported pipe (pinned–pinned) conveying fluid is given in the

appendix. Standard Galerkin-type projections allow us to approximate this by a more tractable finite-dimensional

dynamical system. In the Galerkin procedure for gyroscopic systems, it is essential to take at least two modes of the

amplitude of the displacement for a good approximation; the result is a system of second-order equations (see the

appendix)

€qþ ðĒ
�Lþ a2BÞ_qþ ðLþ a0C � a1DÞqþ f ðq; _qÞ ¼ 0,

where L ¼ diag fl41; l
4
2g, and the cubic nonlinear terms are given by

f ðq; _qÞ ¼
f 1ðq; _qÞ

f 2ðq; _qÞ

" #
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and

f sðq; _qÞ ¼ �kð�c11q21 � 2c12q1q2 � c22q22Þ ðcs1q1 þ cs2q2Þ � sð�c11q1 _q1 � c22q2 _q2Þ ðcs1q1 þ cs2q2Þ.

2.1. Harmonically perturbed axial flow

We now assume that the axial velocity of the flow is harmonically perturbed, u ¼ u0ð1þ mf ðtÞÞ. If we assume that the

forcing and damping are small, i.e.,

m ¼ �h; Ē
�
¼ �x�,

where � is a small parameter, then the coefficients ða1; a2; a3Þ from (20) become

a0 ¼ u20 þ 2�hu20f ðtÞ þ �2u20h2f 2
ðtÞ � T̄ þ �Mrhu0 _f ðtÞ,

a1 ¼ �Mrhu0 _f ðtÞ,

a2 ¼ 2Mru0ð1þ �hf ðtÞÞ.

We also note that s ¼ 2�z�k. The equation of motion then becomes [see Namachchivaya and Tien (1989b)]

€qþ 2Mru0B_qþ ðLþ ðu20 � T̄ÞCÞqþ f ðq; _qÞ ¼ �hf�Mru0 _f ðtÞðC �DÞ � ð2u20f ðtÞÞCgq

� �hfð2Mru0f ðtÞÞBg_q� �z�L_q.

2.2. Pinned–pinned boundary conditions

If we now specify that the pipe has pinned–pinned boundary conditions, then we can determine the modal functions

Fj and hence the coefficients of the matrices B, C, and D. We choose the modal functions FjðxÞ ¼
ffiffiffi
2
p

sin jpx, which
determines the coefficients c11 ¼ �p2, c22 ¼ �4p2, c12 ¼ c21 ¼ 0, d11 ¼ �p2=2, d22 ¼ �2p2, d12 ¼

64
9
, d21 ¼

16
9
, l1 ¼ p,

l2 ¼ 2p, and b21 ¼
8
3
. We can then write the matrices B, C, and D as

B ¼
0 � 8

3
8
3

0

" #
; C ¼

�p2 0

0 �4p2

" #
; D ¼

�
p2

2

64

9
16

9
�2p2

2
664

3
775

and the equations of motion in the simpler form

€qþ 2G _qþ Kq ¼ �ð�hD1q� hD2 _q� z�L_q� gðqÞqÞ, (1)

where

G ¼Mru0B ¼
8

3
Mru0

0 �1

1 0

� �
,

K ¼ Lþ ðu20 � T̄ÞC ¼
p4 � ðu20 � T̄Þp2 0

0 16p4 � 4ðu20 � T̄Þp2

" #
¼

o2
1 0

0 o2
2

" #
,

gðq; _qÞ ¼
g1ðq; _qÞ

g2ðq; _qÞ

" #
¼

kp2ðp2q21 þ 4p2q22Þ þ 2�z�kp2ðp2q1 _q1 þ 4p2q2 _q2Þ

4kp2ðp2q2
1 þ 4p2q22Þ þ 8�z�kp2ðp2q1 _q1 þ 4p2q2 _q2Þ

" #
,

D1 ¼Mru0 _f ðtÞ
�

p2

2
�

64

9

�
16

9
�2p2

2
664

3
775þ 2u20f ðtÞ

�p2 0

0 �4p2

" #
¼ D1;s

_f ðtÞ þD1;cf ðtÞ,

D2 ¼
16

3
Mru0f ðtÞ

0 �1

1 0

� �
¼ D2;cf ðtÞ
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and L ¼ diag fl41; l
4
2g. The matrix K will be diagonal for the boundary conditions considered here. However, if this is

not the case, then K can be diagonalized with an additional transformation.
3. Hamiltonian formulation

The Lagrangian function for the unperturbed system is given by

L ¼ 1
2
_qT _qþ _qTGq� 1

2
qTKq�UðqÞ

¼ 1
2
ð _q21 þ _q22Þ þ

16
3

Mru0ð _q2q1 � _q1q2Þ �
1
2
ðo2

1q21 þ o2
2q22Þ �Uðq1; q2Þ,

where o1 and o2 are given by

o2
1 ¼ p2ðp2 � ðu20 � T̄ÞÞ; o2

2 ¼ 4p2ð4p2 � ðu20 � T̄ÞÞ

and

UðqÞ ¼
kp4

4
ðq21 þ 4q22Þ

2

is the nonlinear potential term.

3.1. Hamiltonian equations of motion

The generalized momentum is given by p ¼ qL=q_q ¼ _qþ Gq, and hence _q ¼ p� Gq. The Hamiltonian function is

then given by

Hðq; pÞ ¼ pTðp� GqÞ �
1

2
ðp� GqÞTðp� GqÞ � ðp� GqÞTGqþ 1

2
qTKqþUðqÞ

¼ 1
2
ðp21 þ p22Þ þ

8
3
Mru0ðp1q2 � p2q1Þ þ

1
2
ðō2

1q21 þ ō2
2q22Þ þH1ðq; pÞ,

where the nonlinear Hamiltonian term H1ðq; pÞ is defined as

H1ðq; pÞ ¼
def kp4

4
ðq21 þ 4q22Þ

2. (2)

The two quantities ō1 and ō2 are defined as

ō2
1 ¼ p2ðp2 � ðu20 � T̄ÞÞ þ 64

9
M2

r u20 ¼ o2
1 þ g221,

ō2
2 ¼ 4p2ð4p2 � ðu20 � T̄ÞÞ þ 64

9
M2

r u20 ¼ o2
2 þ g221.

The Hamiltonian equations of motion are then given by

_x ¼ Axþ JDH1ðxÞ þ �fhð _f ðtÞDs þ f ðtÞDc � z�Dd Þgx� �z
�F ðxÞ, (3)

where x ¼ ½q1 q2 p1 p2�
T and

A ¼

0 8
3

Mru0 1 0

� 8
3

Mru0 0 0 1

�ō2
1 0 0 8

3
Mru0

0 �ō2
2 � 8

3 Mru0 0

2
66664

3
77775, (4)

F ðxÞ ¼

0

0

f 1ðq; pÞ

f 2ðq; pÞ

2
666664

3
777775 ¼

0

0

2kp2 p2q1 p1 þ
8
3

Mru0q2
� �

þ 4p2q2 p2 �
8
3

Mru0q1
� �� �

q1

8kp2 p2q1 p1 þ
8
3

Mru0q2
� �

þ 4p2q2 p2 �
8
3

Mru0q1
� �� �

q2

2
666664

3
777775, ð5Þ

Ds ¼
0 0

�D1;s 0

" #
; Dc ¼

0 0

�D1;c þD2;cG �D2;c

" #
, (6)
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L ¼ diagonalfl41; l
4
2g ¼ fp

4; 16p4g and

Dd ¼
0 0

LG L

� �
. (7)

Eq. (3) represents the equations of motion (Hamiltonian form) for a two-mode truncation of the pipe conveying fluid.

3.2. Transformation of unperturbed linear matrix to normal form

We first transform the matrix A into its simplest form, i.e., a normal form. The eigenvalues of A are

�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64
9

M2
r u20 þ

1
2
ðō2

1 þ ō2
2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128
9

M2
r u20ðō

2
1 þ ō2

2Þ þ
1
4
ðō2

1 � ō2
2Þ

2
qr

.

We wish to study the system when it possesses a pair of zero eigenvalues. There are two cases to consider:
(i)
 uc;1
0 ¼ 3ō1=8Mr. In this case, the critical flow velocity is given by uc;1

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ T̄

p
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
(ii)
 uc;2
0 ¼ 3ō2=8Mr. In this case, the critical flow velocity is given by uc;1

0 ¼ 4p2 þ T̄ .
Thus, if T̄ ¼ 0, we recover the familiar result that the pipe system has double zero eigenvalues at u0 ¼ p and u0 ¼ 2p:
We also note that in order for critical flow velocities to exist, we must have T̄4� p2 (for uc;1

0 ) or T̄4� 4p2 (for uc;2
0 ).

These limits correspond to the compressive buckling loads of a pipe without fluid flow. Thus, if the compressive load is

large enough, than these critical flow velocities do not exist, since the pipe is unstable even without the presence of fluid

flow.

For the pipe, the behavior of the eigenvalues as the flow velocity u0 is varied is rather complex, and dependent on the

mass ratio Mr and the tension in the pipe, T̄ . For simplicity, we will describe this motion for T̄ ¼ 0. For u0 ¼ 0, the

eigenvalues are at f�ip2;�4ip2g. As u0 is increased, both pairs of eigenvalues move towards the origin along the

imaginary axis, until u0 ¼ p, when the eigenvalues from the first mode become zero. These eigenvalues split, and move

onto the real axis. Eventually, this first mode pair of eigenvalues reverses its direction, and moves back towards the

origin. What happens next depends on the value of Mr. If Mroð3
ffiffiffi
3
p

=32Þp, then the eigenvalues from the second mode

reach zero at u0 ¼ 2p, split, and move onto the real axis. These eigenvalues eventually coalesce along the real axis, and

leave that axis. For Mr4ð3
ffiffiffi
3
p

=32Þp, the eigenvalues from the first mode reach zero first at u0 ¼ 2p, restabilizing that

mode. The two pairs of eigenvalues eventually coalesce along the imaginary axis, and split, indicating the onset of

flutter. These two cases are shown in Fig. 1. In this figure, the eigenvalues are slightly displaced from the axes for clarity.

The first mode is shown as a solid line, and the second mode is shown as a dashed line.

Thus, there are two critical flow velocities at which the system has a double zero eigenvalue, u0 ¼ p and u0 ¼ 2p. If
tension is present in the system, the corresponding critical flow velocities are u0 ¼ ðp2 þ T̄Þ1=2 and u0 ¼ ð4p2 þ T̄Þ1=2. A

key idea here is that as the flow velocity u0 increases from zero, both pairs of eigenvalues approach the origin initially.

In this research, we vary the flow rate u0 while maintaining a constant value of the tension T̄ (often we set T̄ ¼ 0 for

simplicity). However, we could also analyze the effects of varying the tension, while keeping the flow rate constant, or

varying both parameters simultaneously. In Fig. 2 we plot the two critical points, at which the system has a double zero

eigenvalue, in the T̄ � u0 plane. The shaded region A in this figure is stable. Part of the region C may also be stable as

described above for the case Mr4ð3
ffiffiffi
3
p

=32Þp. We can see from this figure that qualitatively, increasing the flow velocity

u0 is equivalent to decreasing the tension T̄ . We remark that at Mr ¼ ð3
ffiffiffi
3
p

=32Þp, the system possesses four zero

eigenvalues, an interesting degenerate case.

The next step is to calculate the linear normal form for the system at these critical flow velocities. Since the

generalized eigenspaces are symplectic, we can use the eigenvectors to generate the symplectic transformations. When

u0 ¼ ðp2 þ T̄Þ1=2, the system has eigenvalues and kernel

0; 0;�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12p4 þ 256

9
M2

r ðp2 þ T̄Þ

q
,

ker A ¼ span 1; 0; 0;
8

3
Mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ T̄

p� �
¼ span½1; 0; 0; ō1�,

whereas when u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ T̄

p
, the system has eigenvalues and kernel

0; 0;�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p4 � 256

9
M2

r ð4p2 þ T̄Þ

q
,
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Fig. 2. Location of critical points in T̄ � u0 parameter space.
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Fig. 1. Eigenvalue motion for pipe conveying fluid ðT̄ ¼ 0Þ.
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kerA ¼ span 0; 1;� 8
3
Mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ T̄

p
; 0

h i
¼ span½0; 1;�ō2; 0�.

Thus, we see that both double zero eigenvalue cases will correspond to nonsemisimple Jordan normal forms.

Next, we construct a transformation x ¼ Tz that will put the linear system into normal form. To preserve the

Hamiltonian structure, this transformation must be symplectic, i.e., it must satisfy the relation TTJT ¼ mJ. For

simplicity, we will only proceed for the case u0 ¼ ðp2 þ T̄Þ1=2, that is, the point at which the pipe first becomes unstable

through a divergence bifurcation. The second critical flow velocity, u0 ¼ ð4p2 þ T̄Þ1=2, may correspond to a

restabilization of the first mode, or an instability in the second mode. Henceforth, all calculations will be assumed to be

for the case u0 ¼ ðp2 þ T̄Þ1=2. We first calculate that at the critical flow velocity u0 ¼ ðp2 þ T̄Þ1=2

ō1 ¼
8
3
Mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ T̄

p
; ō2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12p4 þ 64

9
M2

r ðp2 þ T̄Þ

q
and thus, we define, for convenience

ō2 ¼
def ō2

1 þ ō2
2 ¼ 12p4 þ 128

9
M2

r ðp
2 þ T̄Þ; ō2

2 � ō2
1 ¼ 12p4,

L2
1 ¼
def

3ō2
1 þ ō2

2 ¼ 12p4 þ 256
9

M2
r ðp

2 þ T̄Þ.

For u0 ¼ ðp2 þ T̄Þ1=2, the matrix T which transforms the system to a complex normal form is given by

T ¼ ½u1 þ iv1 u2 þ iv2 u1 � iv1 u2 � iv2�, (8)
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where

u1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ō2

2 � ō2
1

q
ffiffiffi
2
p

L1

0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ō2

2 � ō2
1

q
o1ffiffiffi

2
p

L1

2
6666666666664

3
7777777777775
; v1 ¼

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ō2

2 � ō2
1

q
ffiffiffi
2
p

L1ffiffiffi
2
p

o1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ō2

2 � ō2
1

q
L1

�
o2

1 þ o2
2ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ō2
2 � ō2

1

q
L1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ō2

2 � ō2
1

q
o1ffiffiffi

2
p

L1

2
666666666666666666664

3
777777777777777777775

,

u2 ¼

o1

L
3
2

1

�
1

2
ffiffiffiffiffiffi
L1

p

�
o1

2
ffiffiffiffiffiffi
L1

p

�
o2

1 þ o2
2

2L
3
2

1

2
666666666666664

3
777777777777775

; v2 ¼

�
o1

L
3
2

1

�
1

2
ffiffiffiffiffiffi
L1

p

�
o1

2
ffiffiffiffiffiffi
L1

p

o2
1
þo2

2

2L
3
2
1

2
66666666666664

3
77777777777775
.

This transformation is symplectic with multiplier m ¼ 1
i
, so that the new Hamiltonian is given by

KðzÞ ¼ mHðTzÞ ¼ �iHðTzÞ ¼
i

4
ðz1 � z̄1Þ

2
� iL1z2z̄2, (9)

with corresponding linear matrix

Â ¼

�
i

2
0

i

2
0

0 �iL1 0 0

�
i

2
0

i

2
0

0 0 0 iL1

2
6666664

3
7777775
.

This matrix Â is the unperturbed linear normal form for the system at the critical point u0 ¼ ðp2 þ T̄Þ1=2.

3.3. Introduction of bifurcation and detuning parameters

The linear normal form we have calculated in the previous section is fine if the flow velocity u0 is exactly at the critical

flow velocity uc
0 ¼ ðp

2 þ T̄Þ1=2. However, in the real world, we would like to study the system when it is near the critical

point, say u0 ¼ uc
0 þ

~d. It is more convenient to define ~d ¼ ð3=8MrÞd, so that

8

3
Mru0 ¼

8

3
Mr uc

0 þ
3

8Mr

d
� �

¼
8

3
Mru

c
0 þ d,

and the matrix A becomes

A ¼

0 8
3
Mru

c
0 þ d 1 0

� 8
3
Mru

c
0 � d 0 0 1

�ō2
1 0 0 8

3
Mru

c
0 þ d

0 �ō2
2 � 8

3Mru
c
0 � d 0

2
66664

3
77775. (10)

We can break this matrix up into two components: one matrix at the critical point, and a second matrix which

represents the perturbation from the critical case.
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In this case, we find that

ō1;0 ¼
8
3
Mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ T̄

p
; ō2;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12p4 þ 64

9
M2

r ðp2 þ T̄Þ

q
,

where we have added the additional subscript 0 to denote that these expressions are calculated at the critical point, i.e.,

for d ¼ 0. When the perturbation is added, we have

ō2
1 ¼ ō2

1;0 þ 2~d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ T̄

p
�p2 þ 64

9
M2

r

� �
þ Oð~d2Þ,

ō2
2 ¼ ō2

2;0 þ 2~d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ T̄

p
�4p2 þ 64

9
M2

r

� �
þ Oð~d2Þ.

Thus, the matrix A from (10) can be written as

A ¼ A0 þ dA1 þ Oð~d
2
Þ,

where

A0 ¼

0 ō1;0 1 0

�ō1;0 0 0 1

�ō2
1;0 0 0 ō1;0

0 �ō2
2;0 �ō1;0 0

2
66664

3
77775

and

A1 ¼

0 1 0 0

�1 0 0 0

�
3

4Mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ T̄

p 64

9
M2

r � p2
� �

0 0 1

0 �
3

4Mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ T̄

p 64

9
M2

r � 4p2
� �

�1 0

2
66666664

3
77777775
.

Now we make the transformation T given in (8) to normalize A0. The linear Hamiltonian of the system, including

unfolding effects, is given by

Hðx; dÞ ¼
1

2
ðp21 þ p22Þ þ ō1;0ðp1q2 � p2q1Þ þ

1

2
ðō2

1;0q21 þ ō2
2;0q22Þ

þ d ðp1q2 � p2q1Þ þ
3

8Mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ T̄

p 64

9
M2

r ðq
2
1 þ q22Þ � p2ðq21 þ 4q22Þ

� �� �
þ OðdÞ.

To determine the effect of the transformation T on the unfolding terms, we calculate

Ĥðz; dÞ ¼
1

i
HðTz; dÞ.

As for the other terms in (3), we do not list the lengthy results of this calculation, instead waiting until we can determine

which of these coefficients are important.

Before calculating the normal form for the pipe equations which we have developed, we want to detune the equations

of motion. The purpose of this detuning is to allow us to understand what happens when the forcing frequency is near,

but not necessarily at some critical forcing frequency. To detune the original equation, given in (3), we specify the form

of the forcing as f ðtÞ ¼ cos nt, where n is the frequency of the input forcing. This choice explains the notation Ds and Dc,

since those matrices multiply sin and cos functions, respectively. We thus introduce the detuning as n ¼ o0ð1� �lÞ,
where l is the small detuning parameter, and o0 is some critical frequency. We then rescale time by t ¼ nt, and the

equations of motion (3) become, with some simplification,

o0x
0 ¼ A0xþ JDH1ðxÞ þ �ðdA1 þ lA0 � ho0 sin tDs þ h cos tDcÞx� �z

�
ðDdxþ F ðxÞÞ þ Oð�2Þ, (11)
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where we have scaled d! �d and the linear damping and forcing terms are given by

Dd ¼

0 0 0 0

0 0 0 0

0 o1p4 p4 0

�16o1p4 0 0 16p4

2
6664

3
7775; Ds ¼

0 0 0 0

0 0 0 0

3o1p2

16

8o1

3
0 0

2o1

3

3o1p2

4
0 0

2
66666664

3
77777775

and

Dc ¼

0 0 0 0

0 0 0 0

o2
1

9p2

32M2
r

� 2

� �
0 0 2o1

0 o2
1

9p2

8M2
r

� 2

� �
�2o1 0

2
666666664

3
777777775
.

The normal form of the system will be based on the form of the matrix A0; which is nonsemisimple. Once again

we use the transformation x ¼ Tz defined in (8) that will put the linear system into normal form as before.

The forcing terms can be separated into Hamiltonian terms and non-Hamiltonian terms. When we perform

the normal form transformations for the pipe, we will see that only the Hamiltonian terms survive in the

normal form.
4. Normal forms

In our analysis, we would like to reduce the original system to as simple a form as possible, that is, we want to find the

simplest form of the nonlinear terms that captures the qualitative dynamics of the system. Ideally, we would like to

make a series of coordinate transformations to completely eliminate all of the nonlinear terms. When the system we are

studying is Hamiltonian, we also want the reduced system to be Hamiltonian. To achieve this, the normal form

transformations should be symplectic.

4.1. Hamiltonian normal form

In this section, we calculate the normal form for the Hamiltonian function of the pipe. The Hamiltonian terms in the

equations of motion include the following: the unperturbed linear matrix A0, the d-perturbations to A0, the detuning

terms, and the nonlinear Hamiltonian terms. So far, we have made a symplectic transformation to transform the

unperturbed linear matrix to the form A0. We also calculated the effect of this transformation on the rest of the terms.

Next, we want to make a symplectic transformation to transform A1 into its normal form.

The method of normal forms for autonomous Hamiltonian systems is described in Meyer and Hall (1992) and is also

described briefly in Nagata and Namachchivaya (1998). We shall follow the algorithm for obtaining the normal form

for a nonautonomous Hamiltonian system given in McDonald et al. (1999).

In the previous section, we found that the unperturbed Hamiltonian in the complex z coordinates is given by

H0
0 ¼

1

o0
f1
4
ðz1 � z̄1Þ

2
� iL1z2z̄2g.

The basis for the normal form can be found as the kernel of the adjoint of the linear operator, ker DA� , where DA has

been defined in McDonald et al. (1999) as

Dk
A ¼ fH

0
0; �g Dk

A :H
k;2p
n �!Hk;2p

n ,

where Hk;2p
n is the space of homogeneous polynomials of degree k in n variables, with 2p periodic coefficients

which are C1 in t. We split this Hamiltonian, and its adjoint (the Hamiltonian associated with A�) into semisimple and

nilpotent parts
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HS ¼ �
iL
o0

z2z̄2; HN ¼
i

4o0
ðz1 � z̄1Þ

2,

H�S ¼
iL
o0

z2z̄2; H�N ¼
i

4o0
ðz1 þ z̄1Þ

2.

The normal form must belong to the intersection of the kernel of the operators DS� and DN� , that is,

ker DA� ¼ ker DS� \ ker DN� , where the operators are given by

DS� ¼
iL
o0

z̄2
q
qz̄2
� z2

q
qz2

� �
þ

q
qt
; DN� ¼

i

2o0
ðz1 þ z̄1Þ

q
qz̄1
�

q
qz1

� �
.

For terms of the form zm1

1 zm2

2 z̄m3

1 z̄m4

2 eist the condition to be in the kernel of DS� is s ¼ Lðm2 �m4Þ. We then calculate the

action of the operator DN� on terms in kerDS� [see McDonald et al. (1999) for the details of this calculation]. Then, by

calculating the matrix representation of the action of DN� on ker DS� , and finding the kernel of this matrix, we can

determine the normal form. Thus, the Hamiltonian normal form, including unfolding and nonlinearities, is given by

HðzÞ ¼
1

o0

i

4
ðz1 � z̄1Þ

2
þ

ib1d
4
ðz1 þ z̄1Þ

2
� iðL1 � b2dÞz2z̄2 þ ia1ðz1 þ z̄1Þ

4
þ ia2ðz1 þ z̄1Þ

2z2z̄2 þ ia3z22z̄22

� 	
,

where we can determine the coefficients of the nonlinear terms as

a1 ¼ �
9kp12

L4
1

; a2 ¼ �
12kp8ðL2

1 þ 3o2
1Þ

L5
1

; a3 ¼ �
2kp4ð3L4

1 þ 2L2
1o

2
1 þ 3o4

1Þ

L6
1

and the coefficients of the autonomous unfolding terms as

b1 ¼
27p6o1

8M2
rL

2
1

; b2 ¼
o1ðL2

1ð9p
2 � 64M2

r Þ þ 9p2o2
1Þ

16M2
rL

3
1

.

Since the physical parameter k ¼ AL2=2I , we can see that each of the coefficients a1, a2, and a3 are negative. It is

obvious that b140. And observing that 9p2 � 64M2
r40 for Mr 2 ð0; 1Þ, we can show that b240.

4.2. Normal form for damping and forcing terms

The next step in the analysis is to determine the normal form for the damping and forcing terms. We find the

following basis for the normal form for the linear damping and forcing terms:

damping: d1

z1

0

z̄1

0

2
6664

3
7775þ d2

0

z2

0

0

2
6664

3
7775þ d3

z1 þ z̄1

0

�ðz1 þ z̄1Þ

0

2
6664

3
7775þ d4

0

0

0

z̄2

2
6664

3
7775,

forcing: s1

z2e
i
L1
o0
t

0

�z2e
i
L1
o0
t

0

2
6666664

3
7777775
þ s2

z̄2e
�i

L1
o0
t

0

�z̄2e
�i

L1
o0
t

0

2
6666664

3
7777775
þ s3

0

ðz1 þ z̄1Þe
�i

L1
o0
t

0

0

2
666664

3
777775þ s4

0

z̄2e
�2i

L1
o0
t

0

0

2
666664

3
777775

þ s5

0

0

0

ðz1 þ z̄1Þe
i
L1
o0
t

2
666664

3
777775þ s6

0

0

0

z2e
2i

L1
o0
t

2
666664

3
777775.

Using reality conditions, i.e., the second two equations are conjugates of the first two equations, we know that

d4 ¼ d̄2, s2 ¼ �s̄1, s5 ¼ s̄3, and s6 ¼ s̄4. We can also determine that d1 must be real, while d3 must be imaginary. Thus,

we have three independent damping coefficients to determine, and three forcing coefficients. We also note that the terms

with coefficients s1, s2, s3, and s5 only occur for the combination resonance case, while the terms with coefficients s4
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and s6 only occur for the subharmonic resonance case. The next step is to calculate the coefficients of these normal form

terms.

Thus, we can find the damping coefficients in terms of the original coefficients as

d1 ¼ �
6z�p8

L2
1

; d2 ¼ �
2z�p4ð4L2

1 þ o2
1Þ

L2
1

¼ d̄2; d3 ¼ 0

and the forcing coefficients

s1 ¼
�ho1p2ð27p2o2

1ð1þ iÞ þ 32M2
rL

2
1ð1þ iÞ � 18M2

rp
2L1o1ð1� iÞÞ

32
ffiffiffi
6
p

M2
rL

5=2
1

,

s3 ¼
�ho1p2ð�27p2o2

1ð1� iÞ � 32M2
rL

2
1ð1� iÞ þ 18M2

rp
2L1o1ð1þ iÞÞ

32
ffiffiffi
6
p

M2
rL

5=2
1

,

s4 ¼ �ho2
1

�320M2
rL

2
1 þ 27p2ðL2

1 � o2
1Þ

96M2
rL

3
1

�
3ip2ðL2

1 � o2
1Þ

8L2
1o1

 !
.

We see here that s3 ¼ �s̄1, so in fact, we only have two distinct forcing coefficients, s1 and s4. Also note that the

forcing terms are now conservative, i.e., all of the nonconservative forcing terms were eliminated by the normal form

procedure. Thus, the forcing terms can be simply represented as a Hamiltonian function:

combination resonance: s1ðz1 þ z̄1Þz2e
it � s̄1ðz1 þ z̄1Þz̄2e

�it,

subharmonic resonance: �
s4
2
ðz22e

it � z̄22e
�itÞ.

Note that the nonlinear Hamiltonian terms in the normal form have already been calculated by the Hamiltonian

normal form procedure. Finally, the normal form for the nonlinear damping terms is given by

f1

z1z2z̄2

0

z̄1z2z̄2

0

2
666664

3
777775þ f2

z1ðz1 þ z̄1Þ
2

0

z̄1ðz1 þ z̄1Þ
2

0

2
666664

3
777775þ f3

ðz1 þ z̄1Þz2z̄2

0

�ðz1 þ z̄1Þz2z̄2

0

2
666664

3
777775þ f4

z1 þ z̄1ð Þ
3

0

� z1 þ z̄1ð Þ
3

0

2
666664

3
777775

þ f5

0

z22z̄2

0

0

2
666664

3
777775þ f6

0

ðz1 þ z̄1Þ
2z2

0

0

2
666664

3
777775þ f7

0

0

0

z2z̄22

2
666664

3
777775þ f8

0

0

0

ðz1 þ z̄1Þ
2z̄2

2
666664

3
777775.

Using reality conditions, we can see that f1 and f2 must be real, f3 and f4 must be imaginary, f7 ¼ f̄5, and f8 ¼ f̄6.

The coefficients fi have contributions from three sources. First, we have contributions from the original nonlinear

damping terms in our equations. Next, we have terms that are due to the action of transformations to normalize the linear

damping terms on nonlinear Hamiltonian terms. Finally, we have terms due to the action of transformations to normalize

the nonlinear Hamiltonian terms, acting on linear damping terms. These coefficients are combined and listed below

f1 ¼ �
16�z�kp4o2

1ð2L
2
1 þ 3p4Þ

L5
1

�
16�z�kp8o2

1ð13L
4
1 þ 27L2

1o
2
1 þ 12o4

1Þ

L9
1

,

f2 ¼ �
36�z�kp12

L4
1

�
12�z�kp12o2

1ð23L
2
1 þ 12o2

1Þ

L8
1

,

f3 ¼ �
96�z�ip12kð78o4

1 þ 37o2
1o

2
2 þ 4o4

2Þ

L7
1

,

f4 ¼
864�z�ip20k

L6
1

,
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f5 ¼ �
8�z�kp4ðL2

1 � o2
1Þ

2

L5
1

þ
8�z�kp8o2

1ð13L
4
1 þ 27L2

1o
2
1 þ 12o4

1Þ

L9
1

,

f6 ¼ �
24�z�kp8o2

1

L4
1

þ
24�z�kp12o2

1ð23L
2
1 þ 12o2

1Þ

L8
1

þ
144i�z�kp16ð6o2

1 þ o2
2Þ

L7
1

,

f7 ¼ �
8�z�kp4ðL2

1 � o2
1Þ

2

L5
1

þ
8�z�kp8o2

1ð13L
4
1 þ 27L2

1o
2
1 þ 12o4

1Þ

L9
1

,

f8 ¼ �
24�z�kp8o2

1

L4
1

þ
24�z�kp12o2

1ð23L
2
1 þ 12o2

1Þ

L8
1

þ
144i�z�kp16ð6o2

1 þ o2
2Þ

L7
1

.

We note that none of the coefficients are zero, and thus there are no degeneracies due to missing terms in the nonlinear

damping. Looking at each of these terms, we see that f1 and f2 are both real (as expected), f3 and f4 are both imaginary

(as expected), f5 ¼ f7 are real, and f6 ¼ f8 are complex.

4.3. Final equations of motion for pipe

Now that we have completed the exhaustive normal form calculations, we can write down the equations of motion in

a simpler form. We have

o0 _z ¼ A0zþ Alzþ dA1zþ JDH1ðzÞ þ PðtÞzþ z�Bzþ z�F ðzÞ,

where

A0 ¼

�
i

2
0

i

2
0

0 �iL1 0 0

�
i

2
0

i

2
0

0 0 0 iL1

2
6666664

3
7777775
; A1 ¼

ib1
2

0
ib1
2

0

0 ib2 0 0

�
ib1
2

0 �
ib1
2

0

0 0 0 �ib2

2
66666664

3
77777775
,

Al ¼

0 0 0 0

0 �iL1 0 0

0 0 0 0

0 0 0 iL1

2
6664

3
7775; B ¼

d1 0 0 0

0 d2 0 0

0 0 d1 0

0 0 0 d2

2
6664

3
7775,

PðtÞ ¼

s1z2e
i
L1
o0

t
� s̄1z̄2e

�i
L1
o0

t

�s1ðz1 þ z̄1Þe
�i

L1
o0

t
þ s4z̄2e

�2i
L1
o0

t

�s1z2e
i
L1
o0

t
þ s̄1z̄2e

�i
L1
o0

t

�s1ðz1 þ z̄1Þe
i
L1
o0

t
þ s̄4z2e

2i
L1
o0

t

2
6666664

3
7777775
,

JDH1ðzÞ ¼

4ia1ðz1 þ z̄1Þ
3
þ 2ia2ðz1 þ z̄1Þz2z̄2

ia2ðz1 þ z̄1Þ
2z2 þ 2ia3z22z̄2

�4ia1ðz1 þ z̄1Þ
3
� 2ia2ðz1 þ z̄1Þz2z̄2

�ia2ðz1 þ z̄1Þ
2z̄2 � 2ia3z2z̄22

2
66664

3
77775,

F ðzÞ ¼

f1z1z2z̄2 þ f2z1ðz1 þ z̄1Þ
2
þ f3ðz1 þ z̄1Þz2z̄2 þ f4ðz1 þ z̄1Þ

3

f5z22z̄2 þ f6ðz1 þ z̄1Þ
2z2

f1z̄1z2z̄2 þ f2z̄1ðz1 þ z̄1Þ
2
� f3ðz1 þ z̄1Þz2z̄2 � f4ðz1 þ z̄1Þ

3

f5z2z̄22 þ f̄6ðz1 þ z̄1Þ
2z̄2

2
66664

3
77775.

These equations are different from those obtained by Namachchivaya (1989) and Namachchivaya and Tien (1989a, b)

for gyroscopic systems far from critical points. We also note that there are two critical cases where the forcing terms

occur. At o0 ¼ L1; there is a combination resonance, and only the forcing terms with coefficients s1 are present, and at
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o0 ¼ 2L1, there is a subharmonic resonance, and only the forcing terms with coefficients s4 are present. When the

system is near neither of these resonance frequencies, none of the forcing terms are present. Thus, we have separate sets

of equations for the two cases. We can further simplify these two cases by making a time-dependent symplectic

transformation which eliminates the explicit time-dependence of the forcing terms. This transformation is given by

z1 ¼ w1 z̄1 ¼ w̄1 z2 ¼ w2e
� ðio0t=L1Þ z̄2 ¼ w̄2e

ðio0t=L1Þ.

This transformation also removes the Oð1Þ linear term from the second modal equation. Finally, we can scale time as

t ¼ o0t to eliminate the factor of 1=L1 or 1=2L1 in each of the equations. Thus, we have

_w1 ¼ �
i

2
ðw1 � w̄1Þ þ

ib1d
2
ðw1 þ w̄1Þ þ 4ia1ðw1 þ w̄1Þ

3
þ 2ia2ðw1 þ w̄1Þw2w̄2 þ z�d1w1 þ s1w2 � s̄1w̄2

þ z�½f1w1w2w̄2 þ f2w1ðw1 þ w̄1Þ
2
þ f3ðw1 þ w̄1Þw2w̄2 þ f4ðw1 þ w̄1Þ

3
�,

_w2 ¼ � ilL1w2 þ ib2dw2 þ ia2ðw1 þ w̄1Þ
2w2 þ 2ia3w2

2w̄2 þ z�d2w2 � s̄1ðw1 þ w̄1Þ þ s4w̄2

þ z�½f5w2
2w̄2 þ f6ðw1 þ w̄1Þ

2w2�. ð12Þ

We note that the equations for the two cases (subharmonic and combination resonances) are now identical, except for

the forcing terms.

As calculated earlier, the unperturbed Hamiltonian is the same regardless of the forcing, and is given by

H ¼
i

4
ðw1 � w̄1Þ

2
þ

ib1d
4
ðw1 þ w̄1Þ

2
� iL1ð1þ lÞw2w̄2 þ ib2dw2w̄2

þ ia1ðw1 þ w̄1Þ
4
þ ia2ðw1 þ w̄1Þ

2w2w̄2 þ ia3w2
2w̄2

2.
5. Local bifurcation close to subharmonic resonance case

In this section, we study the local dynamics of pipes conveying pulsating fluid close to the subharmonic resonance.

The rectangular form for the equations of motion (12) is

_x1 ¼ b1dy1 þ 32a1y31 þ 4a2ðx2
2 þ y22Þy1 þ zd1x1 þ zðf1x1ðx

2
2 þ y22Þ þ 4f2x1y21 þ 2f3y1ðx

2
2 þ y22Þ þ 8f4y31Þ,

_y1 ¼ x1 þ zd1y1 þ zðf1y1ðx
2
2 þ y22Þ þ 4f2y31Þ,

_x2 ¼ � sr
4x2 þ si

4y2 þ ðb2d� L1Þy2 þ d2x2 þ 4a2y21y2 þ 2a3y2ðx
2
2 þ y22Þ þ zðf5x2ðx

2
2 þ y22Þ þ 4fr

6x2y21 þ 4fi
6y2y21Þ,

_y2 ¼ þ sr
4y2 þ si

4x2 � ðb2d� L1Þx2 þ d2y2 � 4a2y21x2 � 2a3x2ðx
2
2 þ y22Þ þ zðf5y2ðx

2
2 þ y22Þ

þ 4fr
6y2y21 � 4fi

6x2y21Þ, ð13Þ

where the superscripts r and i denote the real and imaginary parts of the parameters that are defined in Section 4.2.

5.1. Nonlinear damped system

In this section, we only consider the effects of nonlinear damping to the unforced system. The rectangular form for

the equations of motion is the same as (13) with sr
4 ¼ 0 and si

4 ¼ 0. The trivial solution becomes unstable at one point,

given by d ¼ z2d21=b1. At this point, we expect a bifurcation to occur into the plane of the first mode. However, as we

shall see below, the nonlinear damping will affect the form of the bifurcating solutions, and the types of bifurcations

that are possible on those solutions.

5.1.1. Single mode solutions

We look for first-mode solutions with x2 ¼ y2 ¼ 0. We find two real solutions in x1 � y1 coordinates, corresponding

to one branch in action-angle coordinates I1 ¼ ðx
2
1 þ y21Þ=2. This solution is

Ia
1 ¼
ð4a1 � d1zf2 þ zf4 þ

ffiffiffiffi
E
p
Þðz2f2

2 þ ð4a1 þ zf4 þ
ffiffiffiffi
E
p
Þ
2
Þ

8z4f4
2

, (14)

E ¼ ð4a1 � z2d1f2 þ zf4Þ
2
þ ðb1d� z2d21Þz

2f2
2.
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In order for this solution to exist, we must have I140, i.e.,

Ia
1 exists if : 4a1 � z2d1f2 þ zf4 þ

ffiffiffiffi
E
p

40. (15)

After some simplification, we find that (15) is satisfied if d4z2d21=b1. Therefore, the solution branch Ia
1 exists for

d4z2d21=b1. This branch in action-angle coordinates represents two branches in ðx1; y1Þ coordinates. We also know that

this branch is supercritical.

Next, we can examine the stability of the first-mode branch by evaluating the Jacobian of the system along the

bifurcation branch Ia
1. We can show that Ia

1 may undergo a simple bifurcation into the plane of the first mode at

dS1
¼
�16a21 þ 8z2a1d1f2 � 8za1f4 þ 2z3d1f2f4 � z2f2

4

z2b1f
2
2

.

Assuming that z51, this point would occur near dS1
� � 16a21=z

2b1f
2
2o0, at which point Ia

1 does not exist, so there is

no simple bifurcation into the plane of the first mode. We can also determine that Ia
1 may go through a Hopf bifurcation

into the I1 plane at

dH1
¼

d21
4b1
þ
d1ð4a1 þ f4Þ

b1f2

as long as dH1
4z2d21=b1. Also, Ia

1 may undergo a Hopf bifurcation into the I2 plane at

dH2
¼

z2d21
b1
þ

z2d22f
2
2

b1ðf
r
6Þ

2
þ

2d2ð4a1 � z2d1f2 þ zf4Þ

b1f
r
6

as long as dH2
4z2d21=b1. The condition for the solution to go through a simple bifurcation into the plane of the second

mode is much more complicated, but can be evaluated numerically. We can easily show that there are no multi-mode

solutions for the system. This fact would indicate that simple bifurcations do not occur to the plane of the second mode.

Thus, the only bifurcations that the first-mode solutions may have are Hopf bifurcations.

Since the equations with nonlinear damping are difficult to examine analytically, we plot the bifurcations for this

system numerically for a few cases, using the numerical bifurcation analysis software AUTO97 (Doedel et al., 1997).

Plots for the case Mr ¼ 0:7, T̄ ¼ 0, z� ¼ 0:01, k ¼ 2, s ¼ 0:01, h ¼ 0:0, and l ¼ 0:0 are given in Figs. 3 and 4. In these

figures, stable solutions are shown with solid lines, unstable solutions with dotted lines, simple (pitchfork) bifurcations

are indicated by empty boxes, Hopf bifurcations by solid boxes, and periodic solutions by solid circles. The second-

mode solutions do not exist for the unforced case. However, when nonlinear damping is present, a Hopf bifurcation
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Fig. 3. Magnitude of response versus d for Mr ¼ 0:7, T̄ ¼ 0, z� ¼ 0:01, k ¼ 2, s ¼ 0:01, h ¼ 0:0, and l ¼ 0:0.
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may be present, leading to solutions which have a constant component in the first mode, but a periodic component in

the second mode. Plots for the case Mr ¼ 0:7, T̄ ¼ 0, z� ¼ 0:01, k ¼ 2, s ¼ 0:1, h ¼ 0:0, and l ¼ 0:0 are given in Figs. 5

and 6. In this case, the first-mode solution does not go through a Hopf bifurcation, but remains always stable. The plots

of x2 and y2 are not shown, since these coordinates are always zero due to the lack of any steady state or periodic

solutions with components in the second mode. We can now draw a few conclusions about the unforced equations with

damping. First, the trivial solution only undergoes one bifurcation, a simple bifurcation at d ¼ z2d21=b1, which is very

near to zero for z51. This bifurcation leads to a new, supercritical branch of solutions (actually two branches in the

x1 � y1 coordinates). This branch is initially stable, but may undergo a Hopf bifurcation if nonlinear damping is

present. If no nonlinear damping is present, this branch is always stable. Also, there are no second-mode solution

branches or multi-mode solution branches. The presence of first-mode branches is expected, since we have set our

problem up so that the first mode becomes unstable. Also, we expected that there would be no second-mode branches in

the absence of forcing, since the eigenvalues corresponding to the second mode are far from zero. For the rest of this

paper, we include the effects of forcing in our analysis.
5.2. Undamped, forced system

Now, we look at the forced system with no damping, either linear or nonlinear. In the subharmonic case, the forcing

only enters into the equations off motion in the second mode. The equations of motion are then given by

_x1 ¼ b1dy1 þ 32a1y31 þ 4a2y1ðx
2
2 þ y22Þ,

_y1 ¼ x1,

_x2 ¼ ðb2d� lL1Þy2 þ 4a2y21y2 þ 2a3y2ðx
2
2 þ y22Þ � sr

4x2 þ si
4y2,

_y2 ¼ �ðb2d� lL1Þx2 � 4a2y21x2 � 2a3x2ðx
2
2 þ y22Þ þ sr

4y2 þ si
4x2. ð16Þ

Note that for the pipe system sr
4a0 and si

4a0.

The eigenvalues of (16), linearized about the trivial solution, are

l1;2 ¼ �
ffiffiffiffiffiffiffi
b1d

p
; l3;4 ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2d� lL1Þ

2
� s24

q
.

For simplicity, we have defined

s24 ¼
def
ðsi

4Þ
2
þ ðsr

4Þ
2,
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Fig. 5. Magnitude of response versus d for Mr ¼ 0:7, T̄ ¼ 0, z� ¼ 0:01, k ¼ 2, s ¼ 0:1, h ¼ 0:0, and l ¼ 0:0.
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where s440. The first pair of eigenvalues is imaginary for do0, zero at d ¼ 0, and real for d40. Thus,

the system is unstable for d40. The second pair of eigenvalues behaves differently for ðb2o0Þ and ðb240Þ.

Since b240 for the pipe, we will be interested in this scenario for the eigenvalues of the trivial

solution:

eigenvalues imaginary: do
lL1 � s4

b2
or d4

lL1 þ s4
b2

;

eigenvalues real:
lL1 � s4

b2
odo

lL1 þ s4
b2

.

Thus, we can determine the stability of the trivial solution as a function of d and l. This behavior is

shown in Fig. 7, where the unshaded regions are stable, and the shaded regions are unstable. For a

Hamiltonian system such as this, the eigenvalues are symmetric about the real and imaginary axes. Thus,

the trivial solution is stable when all eigenvalues are on the imaginary axis, and unstable when at least one pair of

eigenvalues is real.



ARTICLE IN PRESS

STABLE

STABLE

|   |
2

h

4

|    |
2

PS2
+

PS2
-

4

 

h

h
− 4

 1

h

1

δ

λ 

β

Λ Λ
σ

σ

σ

β
σ

PS1

4

Fig. 7. Stability boundaries for trivial solution for undamped pipe.

R.J. McDonald, N.S. Namachchivaya / Journal of Fluids and Structures 21 (2005) 629–664646
5.2.1. First-mode solutions

Now we look for single-mode solutions to the nonlinear equations. We find a pair of first-mode solutions

PS1: x1 ¼ 0; y1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

b1d
32a1

s
,

which we denote by PS1. As expected, these solutions only exist for d40 and are supercritical. We can determine that

PS1 may have 0 , 1 , or 2 bifurcation points, given by

B1: dB1
¼

8a1ð�lL1 � s4Þ
a2b1 � 8a1b2

and B2: dB2
¼

8a1ð�lL1 þ s4Þ
a2b1 � 8a1b2

.

We note that these bifurcations occur if the corresponding value of d is greater than zero, and B1 occurs for a lower

value of d than B2. We know that a1o0, and we can show that the denominator a2b1 � 8a1b2o0 for the pipe. So we

have the following existence criteria:

B1 exists: lo�
s4
L1

and B2 exists: lo
s4
L1

.

Furthermore, we can determine the following stability criteria for PS1 by examining the eigenvalues of the Jacobian of

the system, linearized about PS1 yields

stable for: �
s4
L1

olo
s4
L1

and unstable for: lo�
s4
L1

or l4
s4
L1

.

Thus, for a fixed value of l, we have three cases:
(i)
 for l4s4=L1, no bifurcation points exist on PS1, and the solution PS1 is always stable;
(ii)
 for �s4=L1olos4=L1, only B2 exists, and the solution is unstable for dodB2
, and stable for d4dB2

;

(iii)
 for lo� s4=L1, both bifurcations B1 and B2 exist, and the solution is unstable between the two bifurcations, and

stable outside the two bifurcations.
5.2.2. Second-mode solutions

By setting x1 ¼ y1 ¼ 0, we can find second-mode solutions

x2 ¼ �
ðsi

4 � s4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2d� lL1 þ si

4 � ½ðb2d� lL1Þsi
4 þ s24�=s4

q
2
ffiffiffiffiffiffiffiffiffi
�a3
p

sr
4

,

y2 ¼ �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

b2d� lL1 þ si
4 � ½ðb2d� lL1Þsi

4 þ s24�=s4
a3

s
.
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These solutions take an especially simple form in action-angle coordinates I2 ¼ ðx
2
2 þ y22Þ=2, tan y2 ¼ x2=y2:

PS2�: I2 ¼
lL1 � b2d� s4

4a3
; tan y2 ¼

si
4 � s4
sr
4

,

PS2þ: I2 ¼
lL1 � b2dþ s4

4a3
; tan y2 ¼

si
4 þ s4
sr
4

.

For the pipe, both of these solutions are supercritical, since the coefficient in front of d, �b2=4a3 is positive. These two
solutions bifurcate from the trivial solution at

PS2�: d ¼
lL1 � s4

b2
and PS2þ: d ¼

lL1 þ s4
b2

,

respectively and the bifurcation to PS2� occurs first.

A critical question to consider is whether the first-mode solution or the second-mode solutions bifurcate from the

trivial solution first. The order in which these bifurcations occurs as d is increased is summarized in Table 1. Fig. 7

shows not only the stability of the trivial solution, but where each of the bifurcations to modes PS1, PS2�, and PS2þ

may occur.

Next, we can determine the stability of the second-mode solutions. First, we look at PS2�. This branch may undergo

a bifurcation at

B�3 : dB�3
¼
�2a2ðlL1 � s4Þ
a3b1 � 2a2b2

.

Of course, this bifurcation only occurs if dB�3
is greater than the value at which the supercritical branch PS2� bifurcates

from the trivial solution. The bifurcation point dB�3
must occur for a positive value of I2. We can show that

a3b1 � 2a2b2o0, (see below) and we know already that a2o0. We can determine that this bifurcation occurs at

B�3 : ðI2ÞB�3 ¼
b1ðlL1 � s4Þ

4ða3b1 � 2a2b2Þ
.

In order for I2 to be positive, we must have lohs4=L1. Thus, B�3 only exists for lohs4=L1. By evaluating the

eigenvalues of the system linearized about PS2� at point B�3 , we can also determine that PS2� is stable before the

bifurcation point (when it occurs), and unstable after the bifurcation point.

Here we make a brief diversion to prove that a3b1 � 2a2b2o0. For the pipe, if we write this combination of

coefficients in terms of the physical parameters Mr, T, and k, we obtain

a3b1 � 2a2b2 ¼ �
81kp8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ T̄

p
36MrL8

1

� f6561p10 þ 917504M6
r ðp

2 þ T̄Þ2

þ 7776M2
rp

6ð13p2 þ T̄Þ þ 25344M4
r ð23p

6 þ 22p4T̄ � p2T̄
2
Þg.

We know that k40, and we can show that if �p2oT̄o23p2, then all of the summands in the numerator are positive. In

this case, the whole coefficient a3b1 � 2a2b2o0. Of course, we remember that we defined our critical velocities by

u20 ¼ p2 þ T̄ . Thus, if T̄o� p2, then our critical velocity is imaginary, i.e., there is no critical velocity. Thus, for the

double zero eigenvalue case that we are considering, we must have T̄o� p2, and hence a3b1 � 2a2b2o0 for the pipe.
Table 1

Order of bifurcations of trivial solution as the parameter d is increased

Parameter region ðb240Þ ðb2o0Þ

lo�
s4
L1

fPS2�;PS2þ;PS1g fPS1;PS2þ;PS2�g

�
s4
L1

olo
s4
L1

fPS2�;PS1;PS2þg fPS2þ;PS1;PS2�g

l4
s4
L1

fPS1;PS2�;PS2þg fPS2þ;PS2�;PS1g
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Similarly, we can find the bifurcation point for PS2þ to occur at

Bþ3 : dBþ
3
¼
�2a2ðlL1 þ s4Þ
a3b1 � 2a2b2

or

Bþ3 : ðI2ÞBþ3 ¼
b1ðlL1 þ s4Þ

4ða3b1 � 2a2b2Þ
.

Thus, Bþ3 only occurs for lo� s4=L1. Also, we can determine that solution PS2þ is never stable.

Hence, we again have three cases for the second-mode solutions. In each case, PS2� occurs before PS2þ for the pipe.
(i)
 First, if lo� s4=L1, then both PS2� bifurcate before PS1. Solution PS2� has a bifurcation point at B�3 , and is

stable before that bifurcation, and unstable afterwards. Solution PS2þ has a bifurcation point at Bþ3 , and is always

unstable.
(ii)
 Second, if �s4=L1olos4=L1, then PS2� bifurcates before PS1, and PS2þ bifurcates after PS1. Solution PS2�

has a bifurcation at B�3 , and is stable before that bifurcation, and unstable afterwards. Solution PS2þ has no

bifurcations, and is always unstable.
(iii)
 Finally, if l4s4=L1, then solutions PS2� both bifurcate after PS1. Neither of PS2� has bifurcations, and both

solutions are always unstable.
These scenarios are shown schematically in Fig. 8.

5.2.3. Multi-mode solutions

Finally, we can determine the multi-mode solutions for this case, i.e., solutions of (16) for which the amplitude of both

modes are nonzero. Due to the length of these expressions, we just write them in simpler action-angle coordinates, as

MM1: I1 ¼
dða3b1 � 2a2b2Þ þ 2a2ðlL1 � s4Þ

16ða22 � 4a1a3Þ
; tan y1 ¼ 0,

I2 ¼
�dða2b1 � 8a1b2Þ � 8a1ðlL1 � s4Þ

8ða22 � 4a1a3Þ
; tan y2 ¼

si
4 � s4
sr
4

;

MM2: I1 ¼
dða3b1 � 2a2b2Þ þ 2a2ðlL1 þ s4Þ

16ða22 � 4a1a3Þ
; tan y1 ¼ 0,

I2 ¼
�dða2b1 � 8a1b2Þ � 8a1ðlL1 þ s4Þ

8ða22 � 4a1a3Þ
; tan y2 ¼

si
4 þ s4
sr
4

.

We note that the phase coordinates do not change on the multi-mode solutions. We can also determine that solution MM1

connects B2, the second bifurcation point of PS1 to B�3 , the bifurcation point of PS2�, and MM2 connects B1, the first

bifurcation point of PS1 to Bþ3 , the bifurcation point of PS2þ. The existence of each multi-mode solution has the same

criteria as the corresponding existence criteria of the bifurcation points that are its end points. Namely, for l4s4=L1, no

multi-mode solutions exist, for �s4=L1olos4=L1, only MM1 exists, and for lo� s4=L1, both MM1 and MM2 exist.

The multi-mode solutions are shown in Fig. 8.

The stability of these multi-mode solutions is very difficult to determine analytically, but we can determine it easily

numerically for specific cases. We will postpone this determination of the stability until we study the damped system.

We also note that the multi-modal solutions provide a mechanism for energy to be transferred from the high-frequency

second mode to the low-frequency first mode. For values of d at which MM1 exists, the second-mode solution PS2� is

unstable. Thus, for initial conditions near PS2� the trajectories go towards the multi-modal solution MM1. This fact

shows an energy transfer between the modes.

5.3. Forced system with linear damping

Next, we look at the system with only linear damping and forcing. The equations of motion in rectangular

coordinates are

_x1 ¼ b1dy1 þ 32a1y31 þ 4a2y1ðx
2
2 þ y22Þ þ zd1x1,

_y1 ¼ x1 þ zd1y1,
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Fig. 8. Bifurcation scenarios for the pipe.
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_x2 ¼ ðb2d� lL1Þy2 þ 4a2y2
1y2 þ 2a3y2ðx

2
2 þ y22Þ þ zd2x2 � sr

4x2 þ si
4y2,

_y2 ¼ �ðb2d� lL1Þx2 � 4a2y21x2 � 2a3x2ðx
2
2 þ y22Þ þ zd2y2 þ sr

4y2 þ si
4x2. ð17Þ

First, we examine the stability of the trivial solution. By examining the characteristic equations of

the Jacobian at ðx1; y1; x2; y2Þ ¼ ð0; 0; 0; 0Þ, we can determine that the system undergoes a simple bifurcation into the
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I1 plane at

PS1: d ¼
z2d21
b1

.

The system also undergoes simple bifurcations into the I2 plane at

PS2� : d ¼
lL1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
b2

and PS2þ: d ¼
lL1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
b2

.

These bifurcation points differ only slightly from the corresponding bifurcation points for the undamped system,

assuming z51. Thus for the trivial solution, we obtain stability diagrams in the d� l plane very similar to Fig. 7.

As for the undamped case, we can determine which bifurcation happens first—the bifurcation to the first mode or one

of the bifurcations to the second mode. The bifurcation to the first mode always occurs for d40, while the bifurcations

to the second mode may occur for do0 or d40. There are three possibilities, as for the undamped case, if we ignore

degenerate cases at which two of these bifurcation points coalesce. These cases are summarized in Table 2, where the

second and third columns give the order of the bifurcations as the parameter d is increased. It may also happen that two

of these bifurcation points occur simultaneously, i.e. fPS1;PS2�g or fPS1;PS2þg bifurcate from the trivial solution at

the same value of d. Although we do not study such degenerate points here, we note that this behavior will occur at

l ¼

b2z
2d21

b1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
L1

.

5.3.1. First-mode solutions

Next, we look for solutions with x2 ¼ y2 ¼ 0. In this case, the solutions are nearly the same as the first-mode

solutions for the unforced case, namely

PS1: ðx1; y1Þ ¼ �zd1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2d21 � b1d

32a1

s
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2d21 � b1d

32a1

s0
@

1
A ¼ ð�zd1y10;�y10Þ.

The solutions only exist for

PS1 exists if: d4
z2d21
b1

,

and thus the branches are supercritical. To determine the stability of the first-mode solution PS1, we use the equations

of motion in coordinates ðx1; y1; x2; y2Þ, and determine the Jacobian evaluated on PS1. Using the Routh Hurwitz

criterion, we can show that this branch does not become unstable with respect to the I1 plane, but does become unstable

with respect to the I2 plane, with simple bifurcation points B1 and B2 at

B1: d ¼
a2z

2d21 þ 8a1 �lL1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �
ða2b1 � 8a1b2Þ

,

Table 2

Order of bifurcations of trivial solution for forced system with linear damping

Parameter region ðb240Þ ðb2o0Þ

lo

b2z
2d21

b1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
L1

fPS2�;PS2þ;PS1g fPS1;PS2þ;PS2�g

b2z
2d21

b1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
L1

olo

b2z
2d21

b1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
L1

fPS2�;PS1;PS2þg fPS2þ;PS1;PS2�g

l4

b2z
2d21

b1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
L1

fPS1;PS2�;PS2þg fPS2þ;PS2�;PS1g
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B2: d ¼
a2z

2d21 þ 8a1 �lL1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �
ða2b1 � 8a1b2Þ

.

We can show that for the pipe the combination of coefficients a2b1 � 8a1b2 is given by

a2b1 � 8a1b2 ¼ �
9p12ko1ð32M2

rL
2
1 þ 9p2o2

1Þ

2M2
rL

7
1

o0.

The bifurcation point B1 occurs at a lower value of d than B2, so we say that B1 occurs first.

Next, we can give the values of the action I1 at which these two bifurcation points occur. We calculate

IB1

1 ¼

ðz2d21 þ 1Þ �b2z
2d21 þ b1 lL1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �� �
8ða2b1 � 8a1b2Þ

and

IB2

1 ¼

ðz2d21 þ 1Þ �b2z
2d21 þ b1 lL1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �� �
8ða2b1 � 8a1b2Þ

.

Again, due to the fact that a2b1 � 8a1b2o0, we can see that B1 occurs for the lower value of I1.

Of course, we need to ensure that these bifurcation points occur for I140, since branch PS1 does not exist elsewhere.

Thus, the bifurcations will occur only if

B1 exists: lo

b2z
2d21

b1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
L1

,

B2 exists: lo

b2z
2d21

b1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
L1

.

Finally, we can determine the stability of branch PS1. We know that a branch can only change stability at

one of its bifurcation points. To determine stability, we use the Routh–Hurwitz method. Since the characteristic

equation can be decomposed into two quadratic equations, the Routh–Hurwitz criterion reduces to the requirement

that all the coefficients of these two characteristic equations have the same sign. Thus, we hav the two characteristic

equations

s2 þ b1sþ c1 ¼ 0 and s2 þ b2sþ c2 ¼ 0,

where the first equation corresponds to the first mode, and the second equation corresponds to the second mode. The

coefficients are

b1 ¼ �2zd1; c1 ¼ 2ð�z2d21 þ b1dÞ and b2 ¼ �2zd2; c2 ¼ C1d
2
þ C2dþ C3.

The two coefficients b1 and b2 are always positive, since d1o0 and d2o0, so there are no Hopf bifurcations. The

coefficient c140 for d4z2d21=b1, which is where PS1 exists, so c1 is always positive on PS1. For the coefficient c2, we

note that c2 ¼ 0 at the two bifurcation points B1 and B2. Furthermore, the curve c2 ¼ c2ðdÞ is a quadratic function of d
with

C1 ¼
ða2b1 � 8a1b2Þ

2

64a21
40.

Thus, the curve c2 ¼ c2ðdÞ is concave upwards. This means that c2 is only less than zero between the two bifurcation

points, and greater than zero otherwise. Thus, when B1 and B2 both exist, PS1 is initially stable, becomes unstable at

B1, and restabilizes at B2. When only B2 exists, PS1 is initially unstable, and stabilizes at B2. In this case, we consider B1

to occur for I1o0. If neither B1 nor B2 exists, then PS1 is always stable. In this case, we consider B1 and B2 to both

occur for I1o0.



ARTICLE IN PRESS
R.J. McDonald, N.S. Namachchivaya / Journal of Fluids and Structures 21 (2005) 629–664652
5.3.2. Second-mode solutions

Next, we look for solutions with x1 ¼ y1 ¼ 0 and I2a0. For convenience, we transform (17) to coordinates

ðx1; y1; I2; y2Þ:

_x1 ¼ b1dy1 þ 32a1y31 þ 8a2y1I2 þ zd1x1,

_y1 ¼ x1 þ zd1y1,

_I2 ¼ 2zd2I2 þ 2I2ðsr
4 cos 2y2 þ si

4 sin 2y2Þ,
_y2 ¼ b2d� lL1 þ 4a3I2 þ ðsi

4 cos 2y2 � sr
4 sin 2y2Þ. ð18Þ

Solving for fixed points of these equations with x1 ¼ y1 ¼ 0, we obtain two branches, denoted PS2� and PS2þ:

PS2�: I2 ¼
ðlL1 � b2dÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
4a3

,

PS2þ: I2 ¼
ðlL1 � b2dÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
4a3

.

Since we must have I240 for a solution to exist, we obtain the following conditions for these solutions to exist:

PS2�: d4
lL1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
b2

and PS2þ: d4
lL1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
b2

.

For the pipe, PS2� and PS2þ correspond to two parallel lines in the I2 � d plane, each with positive slope (since a3o0,

b240). Thus, the branches are supercritical. We also note that, for a given value of d, IPS2þ

2 oIPS2�

2 , since a3o0 when

both exist. The existence of these solutions is of course contingent upon the condition z2d22os24. As for the undamped

case, the branch PS2� occurs first for the pipe, while PS2þ.

Next, we can examine the stability of the solutions PS2�. Using the Routh–Hurwitz methods described earlier, we

determine that solution PS2� may undergo a simple bifurcation into the plane of the first mode at

B�3 : d ¼
a3d

2
1 þ 2a2 �lL1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �
ða3b1 � 2a2b2Þ

and solution PS2þ may undergo a simple bifurcation into the plane of the first-mode solution at

Bþ3 : d ¼
a3d21 þ 2a2 �lL1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �
ða3b1 � 2a2b2Þ

.

We showed earlier that a3b1 � 2a2b2o0 for both the pipe and shaft. Thus Bþ3 occurs for a lower value of d than B�3
(when both exist). We next determine what values of I2 the bifurcations from each of the branches occurs at. First, for

branch PS2�, the bifurcation B�3 occurs at

B�3 : I2 ¼

�b2z
2d21 þ b1 lL1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �
4ða3b1 � 2a2b2Þ

.

For branch PS2þ, the bifurcation Bþ3 occurs at

Bþ3 : I2 ¼

�b2z
2d21 þ b1 lL1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �
4ða3b1 � 2a2b2Þ

.

Thus, Bþ3 will occur at a lesser value of I2 than B�3 .
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Using the fact that I240, we determine the following existence criteria for the bifurcation points B�3 and Bþ3 :

B�3 exists: lo

b2z
2d21

b1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
L1

;

Bþ3 exists: lo

b2z
2d21

b1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
L1

.

Next, we discuss the stability of these branches. For PS2�, the important quantity in the Routh–

Hurwitz table is

c1 ¼

a3ðd
2
1 � b1dÞ þ 2a2 b2d� lL1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �
a3

.

If c140; then PS2� is stable, while if c1o0, PS2þ is unstable. We calculate that c1 ¼ 0 at d ¼ B�3 , which is the

bifurcation point at which PS2� changes stability. In addition

dc1

dd
¼ �
ða3b1 � 2a2b2Þ

a3
o0,

so c1 decreases monotonically. Therefore, we have that c140 (stable) for dodB�3
and c1o0 (unstable) for d4dB�3

. Thus,

for both the pipe and shaft, PS2� is stable for dodB�3
. Using a similar argument, we can show that the solution PS2þ

will always be unstable, for both the pipe and the shaft.

5.3.3. Multi-mode solutions

Since there are no multi-mode solutions present in the unforced case, it is clear that any multi-mode solutions will be

due to the forcing. Since the first-mode solutions may have simple bifurcations into the I2 plane, and the second-mode

solutions may each have a simple bifurcation into the I1 plane, we expect that multi-mode solutions would originate

from those bifurcation points, if they exist. In this case, the equations to be solved are (18). To solve these equations, we

first solve the _y1 equation for x1 as x1 ¼ �zd1y1. We then substitute this into the equation _x1 ¼ 0 and solve for y1 to

obtain

y1 ¼
def
�y10 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2d21 � 8a2I2 � b1d

32a1

s

and consequently

x1 ¼ �zd1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2d21 � 8a2I2 � b1d

32a1

s
¼ �zd1y10.

Thus, we have the two solutions ðx1; y1Þ ¼ ð�zd1y10; y10Þ and ðx1; y1Þ ¼ ðzd1y10;�y10Þ. More conveniently,

we obtain

y210 ¼
z2d21 � 8a2I2 � b1d

32a1
.

We next substitute this expression for y20 into the equations for the second mode, to obtain expressions

for I2 as

MM1: I2 ¼

a2ðz
2d21 � b1dÞ � 8a1 lL1 � b2d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �
8ða22 � 4a1a3Þ

and

MM2: I2 ¼

a2ðz
2d21 � b1dÞ � 8a1 lL1 � b2dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �
8ða22 � 4a1a3Þ

.
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So we have two solutions, where we have assumed that a22 � 4a1a340. Finally, we can substitute this expression for I2
back into the expressions for x1 and y1, and use I1 ¼ ðx

2
1 þ y21Þ=2 to obtain the two corresponding expressions for I1 as

MM1: I1 ¼

ðz2d21 þ 1Þ a3ðb1d� z2d21Þ þ 2a2 lL1 � b2d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �� �
16ða22 � 4a1a3Þ

,

MM2: I1 ¼

ðz2d21 þ 1Þ a3ðb1d� z2d21Þ þ 2a2 lL1 � b2dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q� �� �
16ða22 � 4a1a3Þ

.

Next, we can verify that these solutions do connect the single-mode solutions to each other. As for the undamped case,

MM1 connects B�3 on PS2� to B2, the second bifurcation point on PS1, and MM2 connects Bþ3 on PS2þ to B1, the first

bifurcation point on PS1.

Finally, we can determine the stability of the two multi-mode solutions. The Routh–Hurwitz criteria for the multi-

mode solutions is too complicated to be determined analytically, but we will be able to see the stability of these solutions

numerically. From our observations, we can say that the solution MM1 seems to be stable, while MM2 is unstable

(when each of these exists). Also, MM2 may have a pair of imaginary eigenvalues crossing into the right half plane, but

since this solution is already unstable, this is not a Hopf bifurcation.

Next, we show some example plots for the pipe, generated using the numerical bifurcation package AUTO97 (Doedel

et al., 1997). Plots for the case Mr ¼ 0:7, T̄ ¼ 0, z ¼ 0:01, k ¼ 2, h ¼ 0:1, and l ¼ �0:1 are given in Figs. 9 and 10. In all

of these plots, stable solutions are shown with solid lines, unstable solutions with dotted lines. Plots for the case

Mr ¼ 0:7, T̄ ¼ 0, z ¼ 0:01, k ¼ 2, h ¼ 0:1, and l ¼ 0:0 are given in Figs. 11 and 12. Plots for the case Mr ¼ 0:7, T̄ ¼ 0,

z ¼ 0:01, k ¼ 2, h ¼ 0:1, and l ¼ 0:0 are given in Figs. 13 and 14.

In Figs. 9, 11 and 13, we plot the magnitude of the equilibrium solutions. The order of the bifurcations for the three

cases are as shown in Table 2. In addition, all of the primary branches are supercritical, as expected. The two multi-

mode solutions MM1 and MM2 are also shown, and connect the primary branches. From these diagrams, we see that

(when they exist) MM1 is stable, while MM2 is unstable and has two points at which a pair of eigenvalues are crossing

the imaginary axis (indicated by solid boxes). In Figs. 10, 12, and 14 we plot the coordinates of the equilibrium solutions

versus d. In each of these plots, the relevant single-mode solutions and the multi-mode solutions are shown and labelled.

In the plots of x2 and y2, one of the second-mode solutions and one of the multi-mode solutions is difficult to see, since

they are small compared to the corresponding other solution.
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Note that the behavior observed for the forced system with damping is qualitatively similar to the behavior shown in

Fig. 8 for the forced pipe with no damping. This similarity was expected, since the linearly damped system had

qualitatively the same features as the undamped system.

We can also see the phenomenon of energy transfer from the second mode to the first mode in these figures. The

forcing excites the second mode and creates the second-mode solutions PS2� and PS2þ. Consider only the branch

PS2�. For dodB�3
, the branch PS2� is stable, but for d4dB�3

, branch PS2� is unstable, and initial conditions near this

unstable branch develop a component in the first mode as they move away from PS2�. Thus, the forcing may cause an

initial condition with I1 ¼ 0 to develop a component in the first mode, and hence we say that the energy input by the

forcing is transferred from the second mode to the first mode. To understand the dynamics further, we will need to use

the results of the global analysis in McDonald and Namachchivaya (2005).
5.4. Full equations of motion

Finally, we look at the most general form of the equations of motion. Thus, we consider the nonlinear system with

forcing, and with both linear and nonlinear damping. These equations are the most difficult to analyze, so we will not be

able to do much analytically. We will, however, show some numerical results for several cases. The stability results of

the previous section, for the forced system with only linear damping, are still valid. The nonlinear damping only affects

the primary bifurcation branches, their stability, and any multi-mode solutions.

Based on our previous results, we know the following.
(a)
 Second-mode solutions occur as a result of the subharmonic resonant forcing. Thus, we can expect second-mode

solutions for the full equations of motion.
(b)
 The addition of nonlinear damping allowed the first-mode solution in the unforced case to undergo a Hopf

bifurcation. Thus, the first-mode solution may have a Hopf bifurcation for the forced system.
(c)
 The addition of nonlinear damping will may connect the two second-mode branches at some higher value of d.
These branches were parallel when the system had only linear damping.
As mentioned, the linear stability results are the same as for the forced case with linear damping only. Thus, we have

three bifurcation points of the trivial solution, leading to one first-mode solution and two second-mode solutions. The

order of the bifurcations is as described in Table 2.
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Fig. 13. Magnitude of response versus d for Mr ¼ 0:7, T̄ ¼ 0, z ¼ 0:01, k ¼ 2, h ¼ 0:1, and l ¼ 0:0.
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5.4.1. First-mode solutions

Since the forcing is subharmonic, it only affects the second mode, and thus, the form of the first-mode branch is

unchanged from the unforced case discussed in Section 5.1. As before, we can also show that branch PS1 does not have

a simple bifurcation to the first mode for z51, but may have a Hopf bifurcation to the first or second mode. The Hopf

bifurcation to the first mode and second mode occur at the same points as those given in Section 5.1. Thus, the forcing

does not affect the presence of a Hopf bifurcation. The condition for a simple bifurcation to the second mode to occur is

much more complicated, and involves the forcing coefficient s4. We cannot solve this condition explicitly for d, so we

will not give this condition here. However, we may use AUTO97 (Doedel et al., 1997) to detect parameter values at

which the first-mode solution undergoes a simple bifurcation into the plane of the second mode.

5.4.2. Second-mode solutions

Again, we can find expressions for the second-mode solutions. These expressions become rather unwieldy for the

forced, nonlinearly damped problem, and it becomes rather difficult to answer stability questions for these branches.

Thus, we will only be able to examine these solutions numerically. As for the system with linear damping only, we

obtain two second-mode branches in the action-angle coordinates.

5.4.3. Multi-mode solutions

As for the second-mode solutions, any description of multi-mode solutions and their existence criteria will be

extremely complicated and long. Thus, we will only be able to study these solutions numerically.

5.5. Numerical results

Since it is difficult to analytically determine stability, bifurcation points, etc. for the full system (13) with forcing and

nonlinear damping, we rely on numerical tools, such as AUTO97 (Doedel et al., 1997). Although AUTO97 can only

provide bifurcation diagrams for specific sets of parameters, it is helpful in determining what kind of behavior can be

expected from the system. In these diagrams, stable solutions are shown with solid lines, unstable solutions with dotted

lines. Simple bifurcations are indicated by empty boxes, Hopf bifurcations by solid boxes. Periodic solutions are

indicated by circles, solid for stable solutions, and empty for unstable solutions.

Since we can only use AUTO97 to study the bifurcations for a specific set of parameters, it is difficult to understand

the complete bifurcation picture of the system. However, we can see the types of bifurcations that occur for various

parameter values. One example is given below.
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Example for Mr ¼ 0:7, T̄ ¼ 0, z� ¼ 0:01, k ¼ 2, s ¼ 0:01, h ¼ 0:01, and l ¼ �0:1; see Figs. 15 and 16. In this case,

the two second-mode solutions bifurcate first from the trivial solution, one stable, the other unstable. These two

branches meet at a larger value of d. One first-mode solution also bifurcates from the trivial solution, and undergoes a

Hopf bifurcation. The periodic solution is initially stable, but has a limit point, at which the stability changes.
6. Conclusions

We can now summarize the results of the local bifurcation analysis. For the unforced case, there are no second-mode

solutions, and the first-mode solution becomes unstable near d ¼ 0. The first mode corresponds to the eigenvalues near

zero in our original system, while the second mode corresponds to the eigenvalues that are far from zero on the

imaginary axis.

When we add forcing at the subharmonic resonance frequency, we add time-dependent terms to the equations of

motion. To study this system, we then made a time-dependent transformation that eliminates the explicit time

dependence from the equations of motion. This transformation also moves the eigenvalue pair that was far from zero

on the imaginary axis to the neighborhood of zero. If we had made this transformation for the unforced system, these

eigenvalues would simply pass at zero as d varied, due to the S1-symmetry of the second mode. However, the addition

of forcing breaks this symmetry, and hence the second mode can become unstable here. In fact, this behavior of the

second mode is similar to the behavior of our gyroscopic system as a whole: symmetry-breaking causes an instability in

the system, followed by a restabilization. Of course, the system cannot be restabilized if the first mode has already

become unstable.

The behavior of the nontrivial solutions for the pipe, that is, each of the primary bifurcations is supercritical. For the

system, there may be 0, 1, or 2 multi-mode solutions connecting the primary bifurcation branches, depending on the

magnitude of the detuning parameter l.
Our final results for the full system show the importance of higher order terms in determining the local bifurcation

behavior. When we did not include nonlinear damping, the first-mode bifurcation branch only became unstable through

a simple bifurcation, creating a multi-mode solution that connected to a primary second-mode bifurcation branch.

When nonlinear damping terms were included, the first-mode branch became unstable through a Hopf bifurcation in

the numerical example studied. However, the earlier results are not meaningless, for they provide a good approximation

to the behavior for weakly damped systems. In addition, the presence of multi-mode solutions allows us to determine
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conditions under which energy transfer may occur from the high-frequency mode to the low-frequency mode. We will

obtain similar conditions in the global analysis McDonald and Namachchivaya (2005).
Appendix A. Equations of motion for pipe conveying fluid

The system we consider consists of a uniform pipe of length L; with internal perimeter S, mass per unit length m, and

flexural rigidity EI, which conveys an incompressible fluid with mass per unit length M flowing axially with velocity

UðtÞ. The cross-sectional area A of the flow is assumed constant, and the fluid pressure is maintained at p̄: The pipe,

although flexible, maintains its dimensions under the effects of internal pressure and frictional drag. When undeformed,

the axis of the pipe is aligned with the x-axis. Furthermore, we ignore the effects of gravity, assuming that the pipe is

nominally horizontal. We shall assume that the free motions of the pipe occur in one plane, the x� y plane, and we

further assume that the transverse motions yðx; tÞ are small. This system is shown in Fig. 17. Since we are interested in

the post-bifurcation behavior of this system, we must include nonlinear terms. Thus, we consider the first-order

nonlinearities introduced to Paidoussis and Issid’s model by Holmes (1977) and Namachchivaya and Tien (1989b).

These nonlinearities are due to the axial extension created by lateral motions of the pipe. Assuming Kelvin–Voigt

viscoelasticity for the pipe material, the equation of motion becomes

E�
q
qt
þ E

� �
Iyiv þ MU2 þM

dU

dt
ðL� xÞ � Te �

EA

2L

Z L

0

ðy0Þ2 dx�
E�A

L

Z L

0

ðy0 _y0Þdx

� 	
y00

þ 2MU _y0 þ ðM þmÞ €y ¼ 0.

For a simply supported pipe (pinned–pinned), the boundary conditions are

y ¼ y00 ¼ 0 at x ¼ 0; L,

while for the clamped–clamped pipe, the boundary conditions are given by

y ¼ y0 ¼ 0 at x ¼ 0; L.

The boundary conditions for pinned–clamped pipes are easy to deduce.

A.1. Nondimensionalization

We then nondimensionalize the equation by using

x ¼
x

L
; Z ¼

y

L
; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

mþM

r
t

L2
; u ¼

ffiffiffiffiffiffi
M

EI

r
UL; T̄ ¼

TeL2

EI
,

Mr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

mþM

r
; Ē

�
¼

E�

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I

EðmþMÞ

s
; k ¼

AL2

2I
; s̄ ¼

E�Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIðM þmÞ

p .

We also can write the nonlinear damping coefficient s̄ in terms of the coefficient k as

s̄ ¼
E�Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EIðM þmÞ
p ¼

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIðM þmÞ

p Ē
�
L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðM þmÞ

p
ffiffiffi
I
p ¼ Ē

� AL2

I
¼ 2kĒ

�
.

The nondimensional form of the equation is then

Ē
�
_Ziv þ Ziv þ a0 � a1x� k

Z 1

0

ðZ0Þ2 dx� s̄
Z 1

0

ðZ0 _Z0Þdx
� 	

Z00 þ a2 _Z0 þ €Z ¼ 0, (19)
U 

x = L

x

T

x = 0

y

Fig. 17. A horizontal pipe conveying fluid.
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where

a0 ¼ u2 � T̄ þMr _u; a1 ¼Mr _u; a2 ¼ 2Mru. (20)

Eq. (19) is a PDE for the nondimensional vertical displacement of the pipe, Zðx; tÞ: We will use Galerkin’s method to

construct an ODE for each Fourier mode. Standard Galerkin-type projections allow us to approximate this by a more

tractable finite-dimensional system of dynamical systems. Suppose Zðx; tÞ can be approximated by

Z̄ðx; tÞ ¼
Xn

j¼1

FjðxÞqjðtÞ, (21)

where FjðxÞ are eigenfunctions for the free undamped vibrations of a beam which satisfy the boundary conditions, and

qjðtÞ is the time-dependent amplitude of the jth eigenfunction.

Using the orthogonality propertiesZ 1

0

FjFs dx
¼ 0 jas;

a0 j ¼ s

(

the relationships (obtained from integration by parts)Z 1

0

Fiv
j Fs dx ¼

Z 1

0

F00j F
00
s dx;

Z 1

0

F00j Fs dx ¼ �
Z 1

0

F0jF
0
s dx

and defining

B ¼ bsj ¼

Z 1

0

F0jðxÞFsðxÞdx; C ¼ csj ¼

Z 1

0

F00j ðxÞFsðxÞdx,

D ¼ dsj ¼

Z 1

0

xF00j ðxÞFsðxÞdx; dsj ¼

Z 1

0

FjðxÞFsðxÞdx,

we obtain a pair of second-order finite-dimensional ODEs for the time-dependent amplitude coefficients in matrix form

€qþ ðĒ
�Lþ a2BÞ_qþ ðLþ a0C � a1DÞqþ f ðq; _qÞ ¼ 0,

where L ¼ diag fl41; l
4
2; . . . ; l

4
ng, and the cubic nonlinear terms are given by f ðq; _qÞ.
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