JOURNAL OF
FLUIDS AND
STRUCTURES

Journal of Fluids and Structures 21 (2005) 629—664

www.elsevier.com/locate/jfs

Pipes conveying pulsating fluid near a 0:1 resonance:
Local bifurcations

R.J. McDonald?®, N. Sri Namachchivaya®*

#Boeing Satellite Systems, Inc., El Sequndo, CA 90245, USA
®Department of Aerospace Engineering, University of Illinois at Urbana—Champaign, Urbana, IL 61801, USA

Received 28 July 2004; accepted 27 July 2005

Abstract

We study the local bifurcation behavior of parametrically excited pipes conveying fluid near a 0:1 resonance. A major
goal of the analysis is to understand how energy may be transferred from the high-frequency mode to the low-frequency
mode in these systems. We study the bifurcations of pipe systems, focusing on the subharmonic resonance case. We
calculate the stability of the trivial solution, the bifurcating single-mode branches and their stability, and the existence
of multi-mode or periodic solutions. Regions where energy transfer may occur from high- to low-frequency modes are
identified. The numerical bifurcation analysis software AUTO97 is used to support the analytical results.
© 2005 Published by Elsevier Ltd.

1. Introduction

The problem of a supported pipe conveying pulsating fluid may model the nonlinear dynamics of a propellant line
carrying fluid with a nonconstant flow rate. Pipes conveying fluid may also be found in boilers, nuclear reactors, heat
exchangers, and steam generators. The primary goal of this and the second part (McDonald and Namachchivaya, 2005)
of the research is to investigate the local and global dynamics of parametrically excited pipes conveying fluid near a 0:1
resonance.

When the pipe oscillates, the flow of fluid through the pipe introduces a gyroscopic or Coriolis force which is
proportional to the fluid velocity. For small flow velocities, there is little coupling between the fluid and the structure.
Centrifugal forces in the pipe act in much the same way as compressive forces do in a beam. Hence, increasing the fluid
velocity decreases the effective stiffness of the pipe system, and may lead to buckling, also known as divergence. The
Coriolis forces act to restabilize the pipe after divergence before flutter finally destabilizes the pipe. For an undamped
system with no external tension or gravity, the classical result is that divergence of the first mode occurs at a
dimensionless critical velocity of u, = 7.

There are a multitude of boundary conditions that are possible for pipes conveying fluid. Two common sets of
boundary conditions are supported boundary conditions (simply supported or clamped), and cantilevered boundary
conditions. For undamped, supported pipes, the only source of energy input is the fluid dynamic forces. However, over
the course of any periodic motion of the pipe, the work done by these forces sums to zero, due to the fact that the
displacement at both ends of the pipe is zero (Benjamin, 1961). Thus, supported pipes are conservative systems in the
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absence of frictional forces. Cantilevered pipes, on the other hand, are nonconservative systems, since the displacement
of the pipe at one end is nonzero, and hence the energy change in the pipe is nonzero. Another difference between these
two sets of boundary conditions is that systems with supported boundary conditions destabilize through divergence,
i.e., a simple bifurcation, while systems with cantilevered boundary conditions destabilize through flutter, i.e., a Hopf
bifurcation.

A review of much of the work that has been done on this problem is given by Paidoussis and Li (1993). Some of the
earliest work on pipes conveying fluid was done by Ashley and Haviland (1950), who attempted to explain vibrations in
the Trans-Arabian Pipeline. The earliest studies of the linear stability of pipes supported at both ends were done in the
early 1950s by Feodos’ev (1951), Housner (1952), and Niordson (1953). Other important work on the linear stability of
this problem was done by Benjamin (1961), and Paidoussis and Issid (1974). The first study on the nonlinear dynamics
of pipes conveying steady fluid flow was done by Thurman and Mote (1969), who showed that the importance of
nonlinearities increases as the flow velocity becomes larger. Other important nonlinear studies of this problem include
Holmes (1977), Ch’ng (1978) and Rousselet and Herrmann (1977). Most of these studies considered only steady-flow
velocities. Work on the problem of pipes with parametrically excited flow velocities has been done by Paidoussis and
Sundararajan (1975), Ariaratnam and Namachchivaya (1986), Namachchivaya (1989), and Namachchivaya and Tien
(1989a,b).

In this paper, we study the local bifurcations of simply supported damped pipe systems near the critical velocity u.,
when the fluid velocity is also pulsating. The goal of our analysis is to understand the effect that the forcing and
damping has on this gyroscopic system in the neighborhood of the 0:1 critical point. We determine the stability of the
trivial solution, the location and type of primary bifurcation points, the nature of any bifurcating solutions, and the
location and type of any secondary bifurcation points and branches. In addition to an analytical analysis, we will use
the numerical bifurcation package AUTO97 (Doedel et al., 1997) to understand the dynamics of the system for more
complicated systems. For simplicity, we concentrate on the subharmonic resonance case, since the lack of coupling
between the modes from the forcing makes analytical solution of the bifurcating branches simpler. Another goal of our
analysis is to understand where energy transfer can occur from the high-frequency second mode to the low-frequency
first mode.

In Section 2, we present the finite-dimensional equations of motion for a pipe conveying fluid with a parametrically
excited flow rate. The true continuum model is a PDE and it is derived in the appendix. The parametric excitation enters
the system through a periodically pulsating fluid flow rate, given by u = uy(1 + cosvt). We also include dissipation
through Kelvin—Voigt damping, both linear and nonlinear. In Section 3, We introduce unfolding parameters and
detuning parameters to observe the behavior of the system near critical states. We derive the equations of motion in
both Lagrangian and Hamiltonian form. In Section 4, we calculate the normal form for the pipe system near the critical
point at which the system possesses a nonsemisimple double zero eigenvalue. Bifurcation parameters are introduced
into the equations off motion to capture the behavior of the system near the critical 0:1 resonance, and near two critical
forcing frequencies. In Section 5, we study the local dynamics of the parametrically excited pipe. We also attempt to
understand how the presence of damping, linear and nonlinear, interacts with the forcing. We identify various fixed
points and periodic solutions for the system, and determine the stability and bifurcation behavior of these equilibria.
The analytical analysis is complemented by the use of the numerical bifurcation package AUTO97 (Doedel et al., 1997).
Finally in Section 6, we summarize the results and interpret them in terms of the physical motion of pipe conveying
pulsating fluid.

2. Finite-dimensional equations of motion

The continuum equation of motion of a simply supported pipe (pinned—pinned) conveying fluid is given in the
appendix. Standard Galerkin-type projections allow us to approximate this by a more tractable finite-dimensional
dynamical system. In the Galerkin procedure for gyroscopic systems, it is essential to take at least two modes of the
amplitude of the displacement for a good approximation; the result is a system of second-order equations (see the
appendix)

i+ (E'A+ @B+ (A +aC —aD)q+/(q,9) =0,
where A = diag{f‘,i‘z‘}, and the cubic nonlinear terms are given by
. f1 (q9,9)
/0= [fz(q, 0
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and

f5@.@) = —x(—cuqi —2¢12414> — n43) (¢s14y + €2g2) — 6(—c1q1dy — naa) (Caqy + Cagy)-
2.1. Harmonically perturbed axial flow
We now assume that the axial velocity of the flow is harmonically perturbed, u = uo(1 4+ uf(?)). If we assume that the
forcing and damping are small, i.e.,
p=c¢h, E"=¢&,
where ¢ is a small parameter, then the coefficients (ay, a,, a3) from (20) become
ay = v} + 2ehiidf (1) + () — T + eM hugf (1),
ar = eMhuof (1),
ay = 2Mup(1 + ehf (1)).
We also note that ¢ = 2¢{*k. The equation of motion then becomes [see Namachchivaya and Tien (1989b)]

A+ 2M 0By + (A + (45 — T)O) +/(4.9) = ehi—Muef (1(C — D) = 23/ ())Clq
— eh{(2Muof (1)B)q — " Aq.

2.2. Pinned-pinned boundary conditions

If we now specify that the pipe has pinned—pinned boundary conditions, then we can determine the modal functions
@; and hence the coefficients of the matrices B, C, and D. We choose the modal functions ®;({) = V/2sin jné, which
determines the coefficients ¢;| = —n%, ¢ = —4n%, cip = €21 =0, dyy = =712 /2, dp = =27, dip =§, doy =&, Ay =,
Ay = 2w, and by = % We can then write the matrices B, C, and D as

b
0 _8 20 -= =
B= |4 Moo= T . D= 2 9
3 0 0 —4nr? 16 2
~ — 2=
9
and the equations of motion in the simpler form
4+ 2G4 + Kq = &(—hD1q — hD>q — (" 44 — g(q)q), O
where
G = MuoB = Muo|© !
= M,upb = 3 rlto 1 ol
K- 4 7 n4—(u%—T)n2 0 @ 0
= A+ —DC= 0 l6rt — 42— T | = | 0 ol

(@,4) = 91(q,9) _ K7T2(7T2’I% + 4”275) + Zﬁé*xnz(nz%‘?l + 47T2‘]2’?2)
PEV= @) | T | 4w2?(@ g +42°0) + 80w (P gy + 472 oi) |
72 64
. T2 ? 2, —n? ; .
Dy=Mu/()| |4 + 2ugf (1) 0 4| = Dy4f (1) + D1of (1),
-9 —27? m

D=1y 0 -1_,
2—? ru(lf(t)[l 0:|— 2,cf([)
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and A = diag {/1‘1‘,2‘21}. The matrix K will be diagonal for the boundary conditions considered here. However, if this is

not the case, then K can be diagonalized with an additional transformation.

3. Hamiltonian formulation

The Lagrangian function for the unperturbed system is given by

2 =14"4+4q"Gq - Jq"Kq - U(q)

= %((I% + (]%) + %MruO(('Iz% —q19,) — %(w%q% + w%‘lg) = U(q1,9),

where w; and w, are given by
o =m0 — (g — 1)), w3 =4n’@4n — (ug — 1))
and
Kkt 2 242
U(q) = T(ql +4q3)

is the nonlinear potential term.

3.1. Hamiltonian equations of motion

The generalized momentum is given by p = 0.4/0q = q + Gq, and hence ¢ = p — Gq. The Hamiltonian function is

then given by

|
H@.p=p'(p—Gg)— 5(p— Gq)'(p— Gg) — (p— Gq)' Gq + 1q"Kq + U(q)
=1} + p3) + M uo(p gy — prqy) + XB1GE + B343) + H(q,p),

where the nonlinear Hamiltonian term H(q, p) is defined as

4
del KTC
Hl(q,p)éT

The two quantities @&; and @; are defined as

(g7 +443)°.

@1 = (1 — (uy — D) + §Mu; = o + 3.
(I)% = 4n’(4n° — (u(z) -+ %‘M%ué = w% + g%l.
The Hamiltonian equations of motion are then given by

X = AX + JDH\(x) + eh(f (1) Ds + f () D — {* Da)}x — eL* F(x),

where X =[g, ¢, p, p,]" and
0 %Mru() 1 0
— %M,.uo 0 0 1
A=
—@? 0 0 SMup |
0 M 0
0 0
0 0
F(x) = = 5. 202 8 2 4
/1@, p) 2icr? (w2, (py + 5 Mrttogs) + 412y (py — M0, ) ) gy
L@ | [ 8kn(72q) (py +§ Mraog,) + 472y (pr — SMruog))) g
0 0] 0 0
DS = —Dl,s 0/ D(. = _Dl,c + DZ.CG _Dz"' ’

(@)

(©)

4)

©)

(6)
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A = diagonal{2}, 23} = {n*, 16x*} and

=] % ° 7
d_{/lG A}' )

Eq. (3) represents the equations of motion (Hamiltonian form) for a two-mode truncation of the pipe conveying fluid.

3.2. Transformation of unperturbed linear matrix to normal form

We first transform the matrix A4 into its simplest form, i.e., a normal form. The eigenvalues of 4 are

:I:i\/%Mf + a7+ @3) F \/@Mzug(a) + @3) + (@ — @3 2,

We wish to study the system when it possesses a pair of zero eigenvalues. There are two cases to consider:

(i) uy' = 3m1/8M,. In this case, the critical flow velocity is given by uy = /n2+ T;
(i1) ”0 = 3@, /8M,. In this case, the critical flow velocity is given by “0 =42+ T.

Thus, if T = 0, we recover the familiar result that the pipe system has double zero eigenvalues at uy = © and uy = 27.
We also note that in order for critical flow velocities to exist, we must have 7> — n? (for u5') or T> — 4n> (for u5?).
These limits correspond to the compressive buckling loads of a pipe without fluid flow. Thus, if the compressive load is
large enough, than these critical flow velocities do not exist, since the pipe is unstable even without the presence of fluid
flow.

For the pipe, the behavior of the eigenvalues as the flow velocity u is varied is rather complex, and dependent on the
mass ratio M, and the tension in the pipe, 7. For simplicity, we will describe this motion for T = 0. For uy = 0, the
eigenvalues are at {&in?, +4in?}. As uy is increased, both pairs of eigenvalues move towards the origin along the
imaginary axis, until o = n, when the eigenvalues from the first mode become zero. These eigenvalues split, and move
onto the real axis. Eventually, this first mode pair of eigenvalues reverses its direction, and moves back towards the
origin. What happens next depends on the value of M,. If M, <(34/3 /32)m, then the eigenvalues from the second mode
reach zero at uy = 2m, split, and move onto the real axis. These eigenvalues eventually coalesce along the real axis, and
leave that axis. For M, > (3+/3/32)x, the eigenvalues from the first mode reach zero first at uy = 2, restabilizing that
mode. The two pairs of eigenvalues eventually coalesce along the imaginary axis, and split, indicating the onset of
flutter. These two cases are shown in Fig. 1. In this figure, the eigenvalues are slightly displaced from the axes for clarity.
The first mode is shown as a solid line, and the second mode is shown as a dashed line.

Thus, there are two critical flow velocities at which the system has a double zero eigenvalue, uy = 7 and uy = 2x. If
tension is present in the system, the corresponding critical flow velocities are uy = (2 + T)"/? and uy = (47> + T)'/%. A
key idea here is that as the flow velocity ug increases from zero, both pairs of eigenvalues approach the origin initially.
In this research, we vary the flow rate u, while maintaining a constant value of the tension T (often we set 7 = 0 for
simplicity). However, we could also analyze the effects of varying the tension, while keeping the flow rate constant, or
varying both parameters simultaneously. In Fig. 2 we plot the two critical points, at which the system has a double zero
eigenvalue, in the 7 — uy plane. The shaded region A in this figure is stable. Part of the region C may also be stable as
described above for the case M, > (3+/3/32)x. We can see from this figure that qualitatively, increasing the flow velocity
uy is equivalent to decreasing the tension 7. We remark that at M, = (3+/3/32)n, the system possesses four zero
eigenvalues, an interesting degenerate case.

The next step is to calculate the linear normal form for the system at these critical flow velocities. Since the
generalized eigenspaces are symplectic, we can use the eigenvectors to generate the symplectic transformations. When
uy = (2 + T)'/?, the system has eigenvalues and kernel

0,0,/ 120 + Z0A2(x2 + T),

ker 4 = spdn{l 0,0,~ M Vn2 + T| =span[l,0,0,d],

whereas when uy = \/4n2 + T, the system has eigenvalues and kernel

0,0, iy /374 — ZM2(4n? + T),
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Fig. 1. Eigenvalue motion for pipe conveying fluid (7 = 0).
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Fig. 2. Location of critical points in T — uy parameter space.

ker A = span [0, 1, -3M,V4n? + T, 0} = spanl0, 1, —@,, 0].

Thus, we see that both double zero eigenvalue cases will correspond to nonsemisimple Jordan normal forms.

Next, we construct a transformation x = 7'z that will put the linear system into normal form. To preserve the
Hamiltonian structure, this transformation must be symplectic, i.e., it must satisfy the relation 77JT = uJ. For
simplicity, we will only proceed for the case uy = (1> + T)l/ 2, that is, the point at which the pipe first becomes unstable
through a divergence bifurcation. The second critical flow velocity, wuy = (4n° + T)l/ 2, may correspond to a
restabilization of the first mode, or an instability in the second mode. Henceforth, all calculations will be assumed to be
for the case uy = (n* + T)"/>. We first calculate that at the critical flow velocity uy = (72 + T)'/?

o =M/ T T, @y = /1200 + S22 + T)
and thus, we define, for convenience
L@t + @} = 120t + BV 4+ T), @ — o = 127,
A L35 4 @) = 12n* + 2M (x> + T).
For uy = (n2 + T)"/?, the matrix T which transforms the system to a complex normal form is given by

T =[u +ivy uy +ivy uy —ivy up — ivy], )
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where
@} — @
5 - ﬁf &
V24, I i) S
0 A /w% — w%/ll
uy = 5 v = 5
: 0 : ot
@3 — o) V24/@3 — @t A,
L R ] @} — ol
V24,
FZL rW1
3 B
A A
1 1
2V 2/,
U = W) » U= o
2J/4¢ W,
o7+ CO% wl+o)
24} 24}
This transformation is symplectic with multiplier 4 = =, so that the new Hamiltonian is given by
. i - . -
K(z) = pH(Tz) = —iH(Tz) = Z(Zl —21) —idizn5, 9)

with corresponding linear matrix

i
_L o Loy
2 2
. 0 —id, 0 0
=l 0 L 0
2 2
0 0 0 i

This matrix A is the unperturbed linear normal form for the system at the critical point uy = (7> + T)l/ 2,
3.3. Introduction of bifurcation and detuning parameters

The linear normal form we have calculated in the previous section is fine if the flow velocity u is exactly at the critical
flow velocity u§ = (n* + T)'/2. However, in the real world, we would like to study the system when it is near the critical
point, say uy = ug + 5. It is more convenient to define § = (3/8M,)J, so that

8 8 3 8
_Mr =_Mr 0 s =_Mr 5 5
3 Mo =3 (uo—i—ngé) 3 uy+96

and the matrix 4 becomes

0 SMu§ + 6 1 0
—SMuf -0 0 0 1

A= " _z 0 0 S0 + 6 (19)
0 - @3 —SMu5 -5 0

We can break this matrix up into two components: one matrix at the critical point, and a second matrix which
represents the perturbation from the critical case.
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In this case, we find that

Dro =M AT, g = /120 + $MA2 4 T),

where we have added the additional subscript 0 to denote that these expressions are calculated at the critical point, i.e.,
for 6 = 0. When the perturbation is added, we have

@} = @ty + 20V + T(—n? + $M?) + 0(5),
@} = @3 + 20V 12 + T(—4n? + $M?) + 0(5).
Thus, the matrix A4 from (10) can be written as

A=Ay + 064, + 03,

where
r 0 @10 1 0
—@d10 0 0
Ao = _(D%,O 0 0 @1,0
0 _@%,0 —10 0
and
r 0 1 0 0
—1 0 0 0
3 = (64
_ 2 i 2_ 2
4, = 4Mr\/n +T(9M, n) 0 0 1
3 = (64
_ 2 hallly V72 2 _
i 0 27 n+T<9M, 47r) 1 0

Now we make the transformation 7 given in (8) to normalize A,. The linear Hamiltonian of the system, including
unfolding effects, is given by

1 _ 1 _ -
H(x,0) = 5(p} +13) + ®10(p192 = P241) + 3 (01 o1 + 33 )

3 = [64
+0(0uts = paa) + o VAT (G MG+ B) - 206+ 4D ) + 000
To determine the effect of the transformation 7" on the unfolding terms, we calculate

H(z,0) = %H(Tz, 5).

As for the other terms in (3), we do not list the lengthy results of this calculation, instead waiting until we can determine
which of these coefficients are important.

Before calculating the normal form for the pipe equations which we have developed, we want to detune the equations
of motion. The purpose of this detuning is to allow us to understand what happens when the forcing frequency is near,
but not necessarily at some critical forcing frequency. To detune the original equation, given in (3), we specify the form
of the forcing as f(f) = cos vt, where v is the frequency of the input forcing. This choice explains the notation D and D,
since those matrices multiply sin and cos functions, respectively. We thus introduce the detuning as v = wy(1 — &4),
where / is the small detuning parameter, and wy is some critical frequency. We then rescale time by 7 = vz, and the
equations of motion (3) become, with some simplification,

woxX' = AoX + JDH |(X) + 6(04, + LAy — hwg sin tDy + hcos D)X — el (Dax + F(X)) + 0(), (11)
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where we have scaled 6 — ¢0 and the linear damping and forcing terms are given by

0 0 00
0 0 0 0 0 o 0 0
0 0 0 0 3o 8wy
ba = 0 ot 0 |’ by=1"15 R
—16o7* 0 0 16z* 201 3oin?
=1 == 90 0
3 4
and
r 0 0 0 0 7
0 0 0 0
92
_ | == -2 0 0o 2
D.= w1(32M§ ) 1
2
0 w$(9iz—2> 201 0
8 M>

The normal form of the system will be based on the form of the matrix 4y, which is nonsemisimple. Once again
we use the transformation x = 7z defined in (8) that will put the linear system into normal form as before.
The forcing terms can be separated into Hamiltonian terms and non-Hamiltonian terms. When we perform
the normal form transformations for the pipe, we will see that only the Hamiltonian terms survive in the
normal form.

4. Normal forms

In our analysis, we would like to reduce the original system to as simple a form as possible, that is, we want to find the
simplest form of the nonlinear terms that captures the qualitative dynamics of the system. Ideally, we would like to
make a series of coordinate transformations to completely eliminate all of the nonlinear terms. When the system we are
studying is Hamiltonian, we also want the reduced system to be Hamiltonian. To achieve this, the normal form
transformations should be symplectic.

4.1. Hamiltonian normal form

In this section, we calculate the normal form for the Hamiltonian function of the pipe. The Hamiltonian terms in the
equations of motion include the following: the unperturbed linear matrix A4y, the J-perturbations to Ay, the detuning
terms, and the nonlinear Hamiltonian terms. So far, we have made a symplectic transformation to transform the
unperturbed linear matrix to the form A4¢. We also calculated the effect of this transformation on the rest of the terms.
Next, we want to make a symplectic transformation to transform A; into its normal form.

The method of normal forms for autonomous Hamiltonian systems is described in Meyer and Hall (1992) and is also
described briefly in Nagata and Namachchivaya (1998). We shall follow the algorithm for obtaining the normal form
for a nonautonomous Hamiltonian system given in McDonald et al. (1999).

In the previous section, we found that the unperturbed Hamiltonian in the complex z coordinates is given by

1 . -
H) = w—o{%(zl — 1) —id1225).
The basis for the normal form can be found as the kernel of the adjoint of the linear operator, ker D 4+, where D, has
been defined in McDonald et al. (1999) as
DYy ={H}),.} DYy —a5,

where Jffj’z" is the space of homogeneous polynomials of degree k in n variables, with 27 periodic coefficients
which are C* in ¢. We split this Hamiltonian, and its adjoint (the Hamiltonian associated with 4*) into semisimple and
nilpotent parts
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i1 i
Hs=——n5, Hy=-—(—2%),
[ON) 40)0

ia i
H% =275, H,=— 21)2.
S wozzzz, N 4w0(21 +Z1)

The normal form must belong to the intersection of the kernel of the operators Dg- and Dy, that is,
ker D4+ = ker Dg- Nker Dy+, where the operators are given by

ia 0 0 0 i 0 0
Dy =—|0— —20— —, Dy=— ) =— — — ).
s (Oh) (22 62’2 = 622) +6t’ N 20)0 (Zl +Zl)(62'1 621)
For terms of the form z}" z5”> {5 Z;€" the condition to be in the kernel of Dy is s = A(my — my). We then calculate the
action of the operator Dy+ on terms in ker Dg- [see McDonald et al. (1999) for the details of this calculation]. Then, by
calculating the matrix representation of the action of Dy+ on ker Dy, and finding the kernel of this matrix, we can
determine the normal form. Thus, the Hamiltonian normal form, including unfolding and nonlinearities, is given by

i$r0

1 (1 . o - . _ . _ _ . _
H(Z) = w—o{z(zl — Z-1)2 + 2 (Z] +Z_1)2 — 1(/11 — ﬁ20)2222 +10(1(21 +Zl)4 + 10(2(21 +21)22222 +10(3Z§Zz},

where we can determine the coefficients of the nonlinear terms as

9xn!? 1267847 + 3007) o= — 2kt (347 + 24707 + 3w?)

o) = — Oy =
4 > 5 6
Al Al Al

and the coefficients of the autonomous unfolding terms as

_ 2770w,

_ 01(4]097% — 64M}) + In’w?
S 8M2AY - '

g 16M7 A3

P2

Since the physical parameter k = AL? /21, we can see that each of the coefficients oy, oy, and o3 are negative. It is
obvious that f8; >0. And observing that 92> — 64M>>0 for M, € (0, 1), we can show that $,>0.

4.2. Normal form for damping and forcing terms

The next step in the analysis is to determine the normal form for the damping and forcing terms. We find the
following basis for the normal form for the linear damping and forcing terms:

z 0 z1+ 2 0
damping: 81| | 42| 2| 10 0 val®
amping: s
ping 'z 1o ’ —(z1 +21) ‘1o
0 0 2
Zzei’/‘%f Z_zeii'lj’i(]JT 0 0
_ o\ —idly R O
) 0 0 (z1 +2)e ™ e ™
forcing: o . + o, . + 03 + 04
bt e T 0 0
—Z7€“0 —Zp€ @
0 0 0 0
0 0
0 0
+ o5 0 + 06 0
-\l 2ifke
(z1 + Z1)e™ zpe"

Using reality conditions, i.e., the second two equations are conjugates of the first two equations, we know that
34 = 65, 00 = —G1, 65 = 63, and g6 = 4. We can also determine that §; must be real, while 63 must be imaginary. Thus,
we have three independent damping coefficients to determine, and three forcing coefficients. We also note that the terms
with coefficients o, 03, 03, and o5 only occur for the combination resonance case, while the terms with coefficients a4
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and g only occur for the subharmonic resonance case. The next step is to calculate the coefficients of these normal form
terms.
Thus, we can find the damping coefficients in terms of the original coefficients as

60 1t A+ o) o
5 (32:——:52, b3=0
A At

o =—

and the forcing coefficients

_ eho QT2 (1 +1) + 32M?> A3(1 +1) — 18M* 72 A1 (1 — 1))

ol
32V6M2 A}

. eho (=27 w}(1 — i) — 32M>A3(1 — i) + 18M? 7 Ay (1 + 1))

3= s

RV6M? A}

e — thes? —320M} A} 4+ 277 (A] — o) 3in*(4] — o) _

: 96M> A} 843w,
We see here that 63 = —ay, so in fact, we only have two distinct forcing coefficients, o; and g4. Also note that the

forcing terms are now conservative, i.c., all of the nonconservative forcing terms were eliminated by the normal form
procedure. Thus, the forcing terms can be simply represented as a Hamiltonian function:

combination resonance: o1(z; + Z1)ze" — 61(z) + Z1)Ze7 ",
A G4 . s
subharmonic resonance: — 7(2%6” — z%e M.

Note that the nonlinear Hamiltonian terms in the normal form have already been calculated by the Hamiltonian
normal form procedure. Finally, the normal form for the nonlinear damping terms is given by

Z1225) z1(z1 + 21)° (z1 + 2))z22; ] (z1 +5)°
0 0 0 0
4 21222 o zi(z + 51)° + s —(z21 + Z21)2222 + %4 —(z1+5)°
0 0 0 ] 0
0 0 0 r 0
235 (21 + 21’z 0 0
¢s 0 + ¢ 0 + ¢ 0 + ¢ 0
0 0 255 | (z1 + 21’5

Using reality conditions, we can see that ¢, and ¢, must be real, ¢; and ¢, must be imaginary, ¢, = ¢s, and ¢g = ¢;.
The coefficients ¢, have contributions from three sources. First, we have contributions from the original nonlinear
damping terms in our equations. Next, we have terms that are due to the action of transformations to normalize the linear
damping terms on nonlinear Hamiltonian terms. Finally, we have terms due to the action of transformations to normalize
the nonlinear Hamiltonian terms, acting on linear damping terms. These coefficients are combined and listed below

Lol it oi(24] 4 31Y) 16" knbwi(1347 + 2747 0] + 1200})

"= A i
¢y = — 360 im'? 1260 km 02347 + 12007)
A Ay
b= — 96el*in'1(78wt + 31w w3 + 4wi
3 AZ P
864¢(*in 0k
by=—7—:

6
Al
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8l ket (A] — o)) N 8el* kb (1347 + 274707 + 1201)

¢s =
A A7
dg= — 246l kmbow? N 24el*kn 2072343 + 1207) N 144iel* k'S (60} + 3)
A} A A] ’
b= ggg*m“(Aj — w})? N 8el*inb (134} +927A%w% + 120%)
AI Al ,
by = — 24 kb w? L 246l kn 20?2343 + 1207) n 144iel* k'8 (60? + w%).
' A A A

We note that none of the coefficients are zero, and thus there are no degeneracies due to missing terms in the nonlinear
damping. Looking at each of these terms, we see that ¢, and ¢, are both real (as expected), ¢; and ¢, are both imaginary
(as expected), ¢5 = ¢, are real, and ¢4 = ¢g are complex.

4.3. Final equations of motion for pipe

Now that we have completed the exhaustive normal form calculations, we can write down the equations of motion in
a simpler form. We have

woz = Aoz + Az + 6412+ JDH (z) + P()z + (*Bz + (*F(2),

where
T i iB iB
_Z - - 0 — 0
2 0 2 0 2 2
0 —id, 0 0 0 i, O 0
AO = 1 0 1 0 5 Al = lﬁl 0 lﬁl 0 B
2 2 2 2
| 0 0 0 14, 0 0 0 —ip,
ro 0 0 0 o0 0 0 O
y 0 —id; 0 O B 0 oo 0 O
700 0 o 0|’ “10 0 &8 0}
L0 0 0 144 0 0 0 o,
L .7
01Z2€“0 — g1Z€e @0
G121 + 21)e W + aume W
iU il —ill ’
—0122€6% + G1Ze @0
—oi(z1 + Z_l)ei%t + 5’42262i‘/”_ll)t
4o (21 + 21)° 4 2ioa(z) + 21225
. _\2 . 2=
10(z1 + 21)"z + 2io3z5Z
JDH (@) = . 2(z1 - l) 2 oh |
—dioy (21 + £1)” — 2iop(z) + Z1)2222
—iop(z; + Z-|)2Z-2 — 2iO(3222_%
b121222 + rzi(z1 + 21) + (21 + 2005 + du(z + 51)
222, + zZ1+Z 2z
Fz) = $s2322 + Po(z1 + 21) 22

$12122% + 2151 + £1) — b5 + E)2aEs — u(er + 21)
$s2233 + dolz1 + 21’5
These equations are different from those obtained by Namachchivaya (1989) and Namachchivaya and Tien (1989a, b)

for gyroscopic systems far from critical points. We also note that there are two critical cases where the forcing terms
occur. At wg = A1, there is a combination resonance, and only the forcing terms with coefficients ¢, are present, and at
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wy = 241, there is a subharmonic resonance, and only the forcing terms with coefficients o4 are present. When the

system is near neither of these resonance frequencies, none of the forcing terms are present. Thus, we have separate sets

of equations for the two cases. We can further simplify these two cases by making a time-dependent symplectic

transformation which eliminates the explicit time-dependence of the forcing terms. This transformation is given by
=W E =W 2y = wye T/ 5 g eliont/An)

This transformation also removes the ()(1) linear term from the second modal equation. Finally, we can scale time as
t = wot to eliminate the factor of 1/4; or 1/24; in each of the equations. Thus, we have

. 8 . '
W = — %(W] —wy) + I'BTI(Wl +wy) + diog (wy + Wl)3 + 2oy (wy + w)wpwy + (0w + aywy — G

+ C[pywiwaivs + dowi(wr +191)7 + Py (wi +191)waiva + pu (w1 + 191)°],
Wy = —iAAywy + if,0wy + ion(w) + w.)zwz + 2iac3w%m')2 + {F0wy — G1(wy + W) + 04,
+ CTbsw3ina + bowr + 1) wal. (12)
We note that the equations for the two cases (subharmonic and combination resonances) are now identical, except for

the forcing terms.
As calculated earlier, the unperturbed Hamiltonian is the same regardless of the forcing, and is given by

i i, 0 . .
H= %(wl — 11'11)2 + 1‘%(% + wl)z — 141 (1 4+ DYwawy + 150w

+io(wy + 11’1)4 +dap(wy + W])2w2m72 + iocgwgwg.

5. Local bifurcation close to subharmonic resonance case

In this section, we study the local dynamics of pipes conveying pulsating fluid close to the subharmonic resonance.
The rectangular form for the equations of motion (12) is

X1 = 10y + 3201y} + dor(x3 + )y + L8131 + L x1(33 + 3) + ddoxip] + 2050, (33 + 13) + 8pi),

P = x1 4 01y + LDy (33 + 13) + 4doy)),
X2 = — 04X2 + 0lyy 4 (Bad — A1)y + 6232 + donyiyy + 2035 (x3 + 13) + Usx2(x3 + 13) + ddgxay + ddeyart).
Vo = + 04y, + 0hxs — (B2d — AD)xa + 62y, — doayixg — 203x2(x3 + 13) + Usyo(x3 + 13)

+ 4oyt — ddgxay), (13)

where the superscripts r and i denote the real and imaginary parts of the parameters that are defined in Section 4.2.

5.1. Nonlinear damped system

In this section, we only consider the effects of nonlinear damping to the unforced system. The rectangular form for
the equations of motion is the same as (13) with ¢, = 0 and ¢/, = 0. The trivial solution becomes unstable at one point,
given by 6 = Czéf /B,. At this point, we expect a bifurcation to occur into the plane of the first mode. However, as we
shall see below, the nonlinear damping will affect the form of the bifurcating solutions, and the types of bifurcations
that are possible on those solutions.

5.1.1. Single mode solutions
We look for first-mode solutions with x, = y, = 0. We find two real solutions in x; — y; coordinates, corresponding
to one branch in action-angle coordinates 7; = (x? + »3)/2. This solution is

(4o — 6{py + Ly + VENC 3 + (4ot + (g + VE))
8493

If = , (14)

E = (4o — 101y + (dy)* + (10 — PN 3.
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In order for this solution to exist, we must have 7, >0, i.e.,

19 exists if: 4oy — 201y + (g + VE>O. (15)

After some simplification, we find that (15) is satisfied if 6>C25f//31, Therefore, the solution branch I7 exists for
0 >C25% /B,. This branch in action-angle coordinates represents two branches in (xj,y;) coordinates. We also know that
this branch is supercritical.

Next, we can examine the stability of the first-mode branch by evaluating the Jacobian of the system along the
bifurcation branch 7¢. We can show that I{ may undergo a simple bifurcation into the plane of the first mode at

_ — 1603 + 800181y — 8L b4 + 20016265 — 95
Chis
Assuming that { <1, this point would occur near dg, ~ — 1605%/(2[3145% <0, at which point I{ does not exist, so there is
no simple bifurcation into the plane of the first mode. We can also determine that I{ may go through a Hopf bifurcation
into the /; plane at
5 14 + ¢y)
oy =—+—7—->

T 4B, B

as long as dy, >C25f/ﬂ1. Also, I{ may undergo a Hopf bifurcation into the I, plane at

5y = 01 C030) | 2024 — 01 + ()
TR B@)? B
as long as oy, > Czéf//ﬂ. The condition for the solution to go through a simple bifurcation into the plane of the second
mode is much more complicated, but can be evaluated numerically. We can easily show that there are no multi-mode
solutions for the system. This fact would indicate that simple bifurcations do not occur to the plane of the second mode.
Thus, the only bifurcations that the first-mode solutions may have are Hopf bifurcations.

Since the equations with nonlinear damping are difficult to examine analytically, we plot the bifurcations for this
system numerically for a few cases, using the numerical bifurcation analysis software AUTO97 (Doedel et al., 1997).
Plots for the case M, =0.7, T =0, {* =0.01, x =2, ¢ = 0.01, 1/ = 0.0, and / = 0.0 are given in Figs. 3 and 4. In these
figures, stable solutions are shown with solid lines, unstable solutions with dotted lines, simple (pitchfork) bifurcations
are indicated by empty boxes, Hopf bifurcations by solid boxes, and periodic solutions by solid circles. The second-
mode solutions do not exist for the unforced case. However, when nonlinear damping is present, a Hopf bifurcation

s,

1.00
'O -
o
0.75 - o -
0 e
o -
./,r
Hopf bifurcation .,4 -
9}
=] -
= 0.50
=
=]
o0
-
0.25 4
Simple bifurcation
0.00 B~ == m - m - m e m e — oo
0.25 | | | | | | |
-10.0 -5.0 0.0 5.0 10.0
-7.5 -2.5 2.5 7.5

3

Fig. 3. Magnitude of response versus é for M, =0.7, T =0, (* =0.01, k =2, ¢ = 0.01, 7 = 0.0, and A = 0.0.
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may be present, leading to solutions which have a constant component in the first mode, but a periodic component in
the second mode. Plots for the case M, = 0.7, T =0, {* = 0.01, k =2, = 0.1, 7 = 0.0, and 4 = 0.0 are given in Figs. 5
and 6. In this case, the first-mode solution does not go through a Hopf bifurcation, but remains always stable. The plots
of x» and y, are not shown, since these coordinates are always zero due to the lack of any steady state or periodic
solutions with components in the second mode. We can now draw a few conclusions about the unforced equations with
damping. First, the trivial solution only undergoes one bifurcation, a simple bifurcation at é = (25f /B, which is very
near to zero for { < 1. This bifurcation leads to a new, supercritical branch of solutions (actually two branches in the
x1; —y; coordinates). This branch is initially stable, but may undergo a Hopf bifurcation if nonlinear damping is
present. If no nonlinear damping is present, this branch is always stable. Also, there are no second-mode solution
branches or multi-mode solution branches. The presence of first-mode branches is expected, since we have set our
problem up so that the first mode becomes unstable. Also, we expected that there would be no second-mode branches in
the absence of forcing, since the eigenvalues corresponding to the second mode are far from zero. For the rest of this
paper, we include the effects of forcing in our analysis.

5.2. Undamped, forced system

Now, we look at the forced system with no damping, either linear or nonlinear. In the subharmonic case, the forcing
only enters into the equations off motion in the second mode. The equations of motion are then given by

X1 = B10y; + 32my] + 402y (53 + 13).

y1 =X,
X2 = (B0 — AA1)Yy + 4oty + 2030,(x3 + 3) — 02 + ahyy,
Py = —(Brd — AA1)x2 — doayixa — 203x2(X3 + ¥3) + 04y + aixa. (16)

Note that for the pipe system ¢ #0 and o/, #0.
The eigenvalues of (16), linearized about the trivial solution, are

Jia=EVP10, 2aa=Hi\/(0 — id))? — a3l

For simplicity, we have defined
SR ICARECAR

1.50

1.00 —

Magnitude

0.25 — Simple bifurcation

-0.25 T T T T T T T
-10.0 5.0 0.0 5.0 10.0
7.5 2.5 2.5 7.5

)

Fig. 5. Magnitude of response versus 6 for M, =0.7, T =0, {* =0.01, k =2, 6 = 0.1, h = 0.0, and / = 0.0.
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Fig. 6. Plots of coordinates versus o for the same conditions as Fig. 5.

where o4>0. The first pair of eigenvalues is imaginary for <0, zero at 6 =0, and real for ¢>0. Thus,
the system is unstable for 6>0. The second pair of eigenvalues behaves differently for (f,<0) and (f,>0).
Since f,>0 for the pipe, we will be interested in this scenario for the eigenvalues of the trivial
solution:

; . . A — A
eigenvalues imaginary: o< A1 T 04 r 5> AA +oq :
B> i
i Ay — A
eigenvalues real: L 04 <5< 01 + 04,
ba B

Thus, we can determine the stability of the trivial solution as a function of ¢ and A. This behavior is
shown in Fig. 7, where the unshaded regions are stable, and the shaded regions are unstable. For a
Hamiltonian system such as this, the eigenvalues are symmetric about the real and imaginary axes. Thus,
the trivial solution is stable when all eigenvalues are on the imaginary axis, and unstable when at least one pair of
eigenvalues is real.
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Fig. 7. Stability boundaries for trivial solution for undamped pipe.

5.2.1. First-mode solutions
Now we look for single-mode solutions to the nonlinear equations. We find a pair of first-mode solutions

B0

PS1: =0 =4y — =
X1 P 4 30,

which we denote by PS1. As expected, these solutions only exist for 6 >0 and are supercritical. We can determine that
PS1 may have 0, 1 , or 2 bifurcation points, given by

8oy (—AA; — 8oty (—AA4
- a1 (=44 — 04) and By O = o (—Ad) + 04)
wfi — 8w f, T wf —8up,
We note that these bifurcations occur if the corresponding value of J is greater than zero, and B; occurs for a lower

value of ¢ than B,. We know that o; <0, and we can show that the denominator a,f8; — 8, <0 for the pipe. So we
have the following existence criteria:

Bli 53

. g4 . , 04
B sts: A< —— and B sts: <—.
1 €X1 A1 an 2 €X1 A A]
Furthermore, we can determine the following stability criteria for PS1 by examining the eigenvalues of the Jacobian of
the system, linearized about PS1 yields

stable for: — % <A< % and unstable for: A< — % or A> %.

Thus, for a fixed value of 4, we have three cases:

(i) for A>04/4,, no bifurcation points exist on PS1, and the solution PS1 is always stable;
(i) for —a4/A)<A<o4/A1, only B exists, and the solution is unstable for d <dg,, and stable for 6> Jp,;
(iii) for A< — a4/4;, both bifurcations By and B, exist, and the solution is unstable between the two bifurcations, and
stable outside the two bifurcations.

5.2.2. Second-mode solutions
By setting x; = y; = 0, we can find second-mode solutions

(0 + 04)\/ Byd — 2A1 + 6% £ [(B20 — 241G, + 02/
+

o 2 /%0 ’
. \/ B — JA1 + 6, £ [(B2d — A1), + 021/ 04
= = — .
2 o3
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These solutions take an especially simple form in action-angle coordinates I, = (x% + y%) /2, tan 0y = x3/y,:

IAL — Brd — i _
PS2™: Izzﬁ, tan(b:(74 r64,
4o a
A1 — B0 i
psat: =T POro g Gt o
4oz oy

For the pipe, both of these solutions are supercritical, since the coefficient in front of 6, —f, /4«3 is positive. These two
solutions bifurcate from the trivial solution at

AN — pA
170 4 PS5 = /“174'04’
B B>

respectively and the bifurcation to PS2~ occurs first.

A critical question to consider is whether the first-mode solution or the second-mode solutions bifurcate from the
trivial solution first. The order in which these bifurcations occurs as ¢ is increased is summarized in Table 1. Fig. 7
shows not only the stability of the trivial solution, but where each of the bifurcations to modes PS1, PS2~, and PS2"
may occur.

Next, we can determine the stability of the second-mode solutions. First, we look at PS27. This branch may undergo
a bifurcation at

PS27: o=

. —200(AA; — 04)
B Op = 21T 94
TR T By = 2mp,

Of course, this bifurcation only occurs if dp; is greater than the value at which the supercritical branch PS2™ bifurcates
from the trivial solution. The bifurcation point éz; must occur for a positive value of I,. We can show that
a3f; — 202, <0, (see below) and we know already that o, <0. We can determine that this bifurcation occurs at

N _ _bGAI =00
By: (g = Aoz By — 200B,)

In order for I, to be positive, we must have A<hos/A,. Thus, By only exists for A<hos/A;. By evaluating the
eigenvalues of the system linearized about PS2™ at point B, we can also determine that PS2™ is stable before the
bifurcation point (when it occurs), and unstable after the bifurcation point.

Here we make a brief diversion to prove that o35, — 202, <0. For the pipe, if we write this combination of
coefficients in terms of the physical parameters M,, T, and k, we obtain

8lxnd/m2+ T
36M, A3
+ 7776 M2 75137 + T) + 25344 M* (2378 + 227* T — 2 T7)).

wf = 2mpy = — x {65617'0 4+ 917504 M°(n® + T)*

We know that x>0, and we can show that if —n? < 7 <2372, then all of the summands in the numerator are positive. In
this case, the whole coefficient a3, — 202, <0. Of course, we remember that we defined our critical velocities by
u(z) = n? 4+ T. Thus, if T < — 7%, then our critical velocity is imaginary, i.e., there is no critical velocity. Thus, for the

double zero eigenvalue case that we are considering, we must have 7 < — n?, and hence a3f8; — 2u,/3, <0 for the pipe.

Table 1
Order of bifurcations of trivial solution as the parameter ¢ is increased

Parameter region ($,>0) ($,<0)

F L (PS27, PS2*, PS1) (PS1, PS2*, PS27}
_ % <i< ;’T‘: (PS27,PS1,PS2"} {PS2%, PS1,PS27)
> 04 {PS1,PS27,PS2"} {PS2T, PS27, PS1)}
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Similarly, we can find the bifurcation point for PS2" to occur at

—20(AA1 + 04)

BY: §pp =7 0 7Y
T wp —2mp,

or

A
B;I (12)3+ =7ﬂ1( 1+ 04) .
3 4(o3fy — 2up,)
Thus, BY only occurs for 2< — a4/4,;. Also, we can determine that solution PS2* is never stable.
Hence, we again have three cases for the second-mode solutions. In each case, PS2~ occurs before PS2" for the pipe.

(i) First, if A< — 64/4,, then both PS2F bifurcate before PS1. Solution PS2~ has a bifurcation point at By, and is
stable before that bifurcation, and unstable afterwards. Solution PS2" has a bifurcation point at B, and is always
unstable.

(ii) Second, if —a4/A; <Z<04/A;, then PS2™ bifurcates before PS1, and PS27 bifurcates after PS1. Solution PS2~
has a bifurcation at Bj, and is stable before that bifurcation, and unstable afterwards. Solution PS2% has no
bifurcations, and is always unstable.

(iii) Finally, if 2>04/4;, then solutions PS2* both bifurcate after PS1. Neither of PS2* has bifurcations, and both
solutions are always unstable.

These scenarios are shown schematically in Fig. 8.

5.2.3. Multi-mode solutions
Finally, we can determine the multi-mode solutions for this case, i.e., solutions of (16) for which the amplitude of both
modes are nonzero. Due to the length of these expressions, we just write them in simpler action-angle coordinates, as
5(0(3ﬂ1 — 20(2/5’2) + 20(2(}u/1| — ay4)

MM1: I, = tan0; =0
! 16(c53 — 4oy o3) A ’

I, — —(S((Zzﬁ] —80(1[))2)—8061(/1/11 —0'4) tanH 20'2—0'4.
’ 8(3 — 4u23) ’ T
M 1, = 2B =208 £ 2004 +a)
o 16(o3 — 4o103) ’ ’
12 _ —5(0{2[))1 — Sdlﬁz) — 80{1(}./11 + 0'4) tan 02 _ O'i + 04
8(03 — 4oy o3) ’ o,

We note that the phase coordinates do not change on the multi-mode solutions. We can also determine that solution MM 1
connects B, the second bifurcation point of PS1 to By, the bifurcation point of PS27, and MM?2 connects B, the first
bifurcation point of PS1 to By, the bifurcation point of PS2¥. The existence of each multi-mode solution has the same
criteria as the corresponding existence criteria of the bifurcation points that are its end points. Namely, for A>04/4;, no
multi-mode solutions exist, for —a4/4; <A<a4/A1, only MM exists, and for A< — g4/A4;, both MM1 and MM? exist.
The multi-mode solutions are shown in Fig. 8.

The stability of these multi-mode solutions is very difficult to determine analytically, but we can determine it easily
numerically for specific cases. We will postpone this determination of the stability until we study the damped system.
We also note that the multi-modal solutions provide a mechanism for energy to be transferred from the high-frequency
second mode to the low-frequency first mode. For values of ¢ at which MM 1 exists, the second-mode solution PS2~ is
unstable. Thus, for initial conditions near PS2~ the trajectories go towards the multi-modal solution MM 1. This fact
shows an energy transfer between the modes.

5.3. Forced system with linear damping

Next, we look at the system with only linear damping and forcing. The equations of motion in rectangular
coordinates are

X1 = B0y, + 32a1y? + 4oczyl(x§ +y%) + {o1x1,
y=x1+0y,
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Fig. 8. Bifurcation scenarios for the pipe.

X2 = (20 — 2A1)y + 4003y, + 203p5(x3 + ¥3) + (8232 — vz + Ty,
Yy = —(Brd — AA1)x2 — doayixa — 203x2(x3 + ¥3) + {02y, + G4y + ahxa.

649

a7

First, we examine the stability of the trivial solution. By examining the characteristic equations of
the Jacobian at (x,y,,x2,¥,) = (0,0,0,0), we can determine that the system undergoes a simple bifurcation into the
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I, plane at
S
B

The system also undergoes simple bifurcations into the 7, plane at

[ 2 252 2 _ 252
PS2-: 6= w and PS2T: = M.

B> B
These bifurcation points differ only slightly from the corresponding bifurcation points for the undamped system,
assuming { < 1. Thus for the trivial solution, we obtain stability diagrams in the 6 — A plane very similar to Fig. 7.

As for the undamped case, we can determine which bifurcation happens first—the bifurcation to the first mode or one

of the bifurcations to the second mode. The bifurcation to the first mode always occurs for § >0, while the bifurcations
to the second mode may occur for <0 or 6>0. There are three possibilities, as for the undamped case, if we ignore
degenerate cases at which two of these bifurcation points coalesce. These cases are summarized in Table 2, where the
second and third columns give the order of the bifurcations as the parameter ¢ is increased. It may also happen that two
of these bifurcation points occur simultaneously, i.e. {PS1, PS27} or {PS1, PS2"} bifurcate from the trivial solution at
the same value of d. Although we do not study such degenerate points here, we note that this behavior will occur at

242
ﬁZlglél F /0-121 _ 4'25%

Ay

PS1: o=

=

5.3.1. First-mode solutions
Next, we look for solutions with x, =y, = 0. In this case, the solutions are nearly the same as the first-mode
solutions for the unforced case, namely

252 242
Col—pio [P0 —pio
PSL: (x1,71) = q:cal\/ T ,i\/ T2 | = (FLoie £10)-

The solutions only exist for

2
PS1 exists if: 0> Q
Bi
and thus the branches are supercritical. To determine the stability of the first-mode solution PS1, we use the equations
of motion in coordinates (x;,y;,x2,,), and determine the Jacobian evaluated on PS1. Using the Routh Hurwitz
criterion, we can show that this branch does not become unstable with respect to the /| plane, but does become unstable
with respect to the 7, plane, with simple bifurcation points B; and B, at

0207 + 8uy (—Ml i~ 853)

Bi o= (wfy —8afo) ’

Table 2
Order of bifurcations of trivial solution for forced system with linear damping

Parameter region (B,>0) (B,<0)

A
e

A< {PS2~,PS2*, PS1} {PS1,PS2",PS27}
ﬂz o1 /702 52 ﬁzczaz R
i< {PS2~,PS1,PS2"} {PS2*, PS1,PS27}
) 2
0 /5 2o
B2 01 /ol — 2 5§
PR S {PS1,PS2~, PS2+) (PS2", PS2™, PS1}

Ay
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m8ﬁ+xm<—bu+,wg—8ﬁ)
(21 — 8o B3) '

We can show that for the pipe the combination of coefficients a8, — 8u 3, is given by

Bz: 0=

%UmmczMﬂﬁ+9ﬁwh<o

wfy — 8y = —
2M*A]

The bifurcation point By occurs at a lower value of § than B,, so we say that B; occurs first.
Next, we can give the values of the action 7, at which these two bifurcation points occur. We calculate

(8%+1(—@8&+ﬁ(b@+,b&—d%))

10 =
! 8(o2fy — 8u1 )

and

@61 + 1)(—/52625% + B (Ml —yJoi - ”255))
8(Oﬂzﬁl - Salﬁz) '

Again, due to the fact that «,f; — 8, <0, we can see that B; occurs for the lower value of ;.
Of course, we need to ensure that these bifurcation points occur for 7, >0, since branch PS1 does not exist elsewhere.
Thus, the bifurcations will occur only if

252
.32['43151 _ /ai - 28

B, _
I? =

B exists: A<

Ay ’
22
0 /
ﬁzé 1 + O_% _ CZ&%
B, exists: 4 ! .
2 €XI1StS < A

Finally, we can determine the stability of branch PS1. We know that a branch can only change stability at
one of its bifurcation points. To determine stability, we use the Routh—-Hurwitz method. Since the characteristic
equation can be decomposed into two quadratic equations, the Routh—-Hurwitz criterion reduces to the requirement
that all the coefficients of these two characteristic equations have the same sign. Thus, we hav the two characteristic
equations

Sz-i—b]S-i—Cl =0 and S2+b25+C2=0,

where the first equation corresponds to the first mode, and the second equation corresponds to the second mode. The
coefficients are

by = =2001, ¢ =2=0+p0) and by = =200y, 3= C16 + Crd+ Cs.

The two coefficients b; and b, are always positive, since d; <0 and d, <0, so there are no Hopf bifurcations. The
coefficient ¢; >0 for 6>C25%/ﬁ1, which is where PS1 exists, so ¢ is always positive on PS1. For the coefficient ¢,, we
note that ¢, = 0 at the two bifurcation points B and B,. Furthermore, the curve ¢, = ¢,(0) is a quadratic function of &
with

_ (o2 — 89‘132)2

C
! 64a2

>0.

Thus, the curve ¢; = ¢2(0) is concave upwards. This means that ¢, is only less than zero between the two bifurcation
points, and greater than zero otherwise. Thus, when By and B, both exist, PS1 is initially stable, becomes unstable at
By, and restabilizes at B,. When only B, exists, PS1 is initially unstable, and stabilizes at B,. In this case, we consider B
to occur for 7; <0. If neither B; nor B, exists, then PS1 is always stable. In this case, we consider B; and B; to both
occur for I <0.
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5.3.2. Second-mode solutions
Next, we look for solutions with x; =y; =0 and I,#0. For convenience, we transform (17) to coordinates

(xlay1512302):

%1 = B10y; + 32 y] + 8oy, Ir + (51 x1,

¥ =x1+ 01y,
Iy = 208,15 4 215(d%, cos 205 + o', sin 205),
0> = Br0 — AA| + 431 + (6, c0s 20 — o sin 20,). (18)

Solving for fixed points of these equations with x; = y, = 0, we obtain two branches, denoted PS2~ and PS2%:

(AA; = B2y — 1/ a2 — (252
PS2: L= 2 G

40(3 ?
oyt g, VA= B+ h - O
: 2 = 4o .

Since we must have I, >0 for a solution to exist, we obtain the following conditions for these solutions to exist:

A = y[a2 = (262 A + /6 — 252
PS2: o>Vt "2 und pS2t o>Vt T2

pa B

For the pipe, PS2~ and PS2" correspond to two parallel lines in the I, — & plane, each with positive slope (since a3 <0,
f»,>0). Thus, the branches are supercritical. We also note that, for a given value of 9, 1757 <I§ST, since o3 <0 when
both exist. The existence of these solutions is of course contingent upon the condition { 5% <a?. As for the undamped
case, the branch PS2~ occurs first for the pipe, while PS27.

Next, we can examine the stability of the solutions PS2%. Using the Routh—-Hurwitz methods described earlier, we
determine that solution PS2~ may undergo a simple bifurcation into the plane of the first mode at

0307 + 20, (—;LA. +1/03 - g%sﬁ)
(031 — 202f3,)

and solution PS2% may undergo a simple bifurcation into the plane of the first-mode solution at

2307 + 20 (—Ml —y/d} - 5255)
(0381 — 202) ‘

We showed earlier that o35, — 2028, <0 for both the pipe and shaft. Thus Bf occurs for a lower value of  than By
(when both exist). We next determine what values of 7, the bifurcations from each of the branches occurs at. First, for
branch PS27, the bifurcation By occurs at

B8+, (),/11 _ m)
Haspr — 2a) :

For branch PS2*, the bifurcation B} occurs at

=B 0251 + By (AAI +/ a5 — {25§>
Aoz Py — 2008,) .

Thus, B;r will occur at a lesser value of I, than BjJ.

By: o=

Bf: &=

By: I,=

B3+I Iz:
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Using the fact that />0, we determine the following existence criteria for the bifurcation points By and Bj:

252
ﬁzé 9} + /Gi—fzég
1 .

By exists: A<

A4 >
$2¢2
&l /
. ﬂZﬂl 1 (Ti _ CZ&%
B exists: A< .
3 &X Al

Next, we discuss the stability of these branches. For PS27, the important quantity in the Routh—
Hurwitz table is

2130 — $19) + 2: <ﬂz5 — A +Jof — CZ(S%)

c] =

o3

If ¢;>0, then PS2™ is stable, while if ¢; <0, PS2" is unstable. We calculate that ¢; =0 at § = B3, which is the
bifurcation point at which PS2~ changes stability. In addition

% __ (a3f) — 2mp,) <0,
do o3

so ¢; decreases monotonically. Therefore, we have that ¢; >0 (stable) for 0 < 533— and ¢; <0 (unstable) for 6 > 533—, Thus,

for both the pipe and shaft, PS27 is stable for 6 <dp;. Using a similar argument, we can show that the solution PS2*

will always be unstable, for both the pipe and the shaft.

5.3.3. Multi-mode solutions

Since there are no multi-mode solutions present in the unforced case, it is clear that any multi-mode solutions will be
due to the forcing. Since the first-mode solutions may have simple bifurcations into the 7, plane, and the second-mode
solutions may each have a simple bifurcation into the /; plane, we expect that multi-mode solutions would originate
from those bifurcation points, if they exist. In this case, the equations to be solved are (18). To solve these equations, we

first solve the y, equation for x| as x; = —(d;y,. We then substitute this into the equation x; = 0 and solve for y; to
obtain
242
def {707 — 8ondy — B16
Y1 Y10 320,

and consequently

203 — 8onl, — 10

32 = F{d1yy0.

x1 = F(o

Thus, we have the two solutions (x1,y;) = (—={d1y9,¥10) and (x1,»,) = ((d1y19, —V19)- More conveniently,
we obtain

, 07— 8l — 1o
Y10 = 320(1 '

We next substitute this expression for y2 into the equations for the second mode, to obtain expressions

for I, as
(07 — B10) — 8uy (2/11 — B0 — /a3 — “255)
MMLl: I, =
2 8(o2 — darja3)
and
(67 — 19) — 8u (2/11 — B0+ 1/a3 - “255)
MM?2: I, = )

8(03 — 4oy or3)
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So we have two solutions, where we have assumed that oc% — 4o03 > 0. Finally, we can substitute this expression for 7,
back into the expressions for x; and y;, and use I} = (x} + »?)/2 to obtain the two corresponding expressions for I as

ot 41 (13([)’15 — 207 + 2wy (i/ll — B0 — /o3 — “25§)>

16(c5 — 4oy 03) ’

G+ (a3(ﬁ1(5 —20%) 4 2y (AAI — Brd+1/0F — %g))

MM2: I, =
! 16(o2 — 4oty c13)

MM1: I, =

Next, we can verify that these solutions do connect the single-mode solutions to each other. As for the undamped case,
MM connects By on PS2- to B,, the second bifurcation point on PS1, and MM?2 connects B;’ on PS2" to By, the first
bifurcation point on PS1.

Finally, we can determine the stability of the two multi-mode solutions. The Routh—-Hurwitz criteria for the multi-
mode solutions is too complicated to be determined analytically, but we will be able to see the stability of these solutions
numerically. From our observations, we can say that the solution MM 1 seems to be stable, while MM?2 is unstable
(when each of these exists). Also, MM?2 may have a pair of imaginary eigenvalues crossing into the right half plane, but
since this solution is already unstable, this is not a Hopf bifurcation.

Next, we show some example plots for the pipe, generated using the numerical bifurcation package AUTO97 (Doedel
etal., 1997). Plots for the case M, = 0.7, T = 0,{ = 0.01, x = 2, h = 0.1, and 1 = —0.1 are given in Figs. 9 and 10. In all
of these plots, stable solutions are shown with solid lines, unstable solutions with dotted lines. Plots for the case
M,=0.7,T=0,{=001,k=2,h=0.1,and /. = 0.0 are given in Figs. 11 and 12. Plots for the case M, = 0.7, T =0,
(=0.01,x=2,h=0.1, and 4 = 0.0 are given in Figs. 13 and 14.

In Figs. 9, 11 and 13, we plot the magnitude of the equilibrium solutions. The order of the bifurcations for the three
cases are as shown in Table 2. In addition, all of the primary branches are supercritical, as expected. The two multi-
mode solutions MM 1 and MM?2 are also shown, and connect the primary branches. From these diagrams, we see that
(when they exist) MM is stable, while M'M?2 is unstable and has two points at which a pair of eigenvalues are crossing
the imaginary axis (indicated by solid boxes). In Figs. 10, 12, and 14 we plot the coordinates of the equilibrium solutions
versus . In each of these plots, the relevant single-mode solutions and the multi-mode solutions are shown and labelled.
In the plots of x; and y,, one of the second-mode solutions and one of the multi-mode solutions is difficult to see, since
they are small compared to the corresponding other solution.

5.0

4.0 —

3.0 —

2.0

Magnitude

0.0

-10.0 -5.0 0.0 5.0 10.0
-7.5 -2.5 2.5 7.5

)

Fig. 9. Magnitude of response versus 6 for M, =0.7, T =0,{=0.01, k=2, h=0.1, and 1 = —0.1.
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Fig. 11. Magnitude of response versus o for M, =0.7, T =0, { =0.01, k =2, 1 = 0.1, and 1 = 0.0.

Note that the behavior observed for the forced system with damping is qualitatively similar to the behavior shown in
Fig. 8 for the forced pipe with no damping. This similarity was expected, since the linearly damped system had
qualitatively the same features as the undamped system.

We can also see the phenomenon of energy transfer from the second mode to the first mode in these figures. The
forcing excites the second mode and creates the second-mode solutions PS2~ and PS2*. Consider only the branch
PS2~. For 5<533—, the branch PS2~ is stable, but for 6 >5B;, branch PS2~ is unstable, and initial conditions near this
unstable branch develop a component in the first mode as they move away from PS27. Thus, the forcing may cause an
initial condition with I} = 0 to develop a component in the first mode, and hence we say that the energy input by the
forcing is transferred from the second mode to the first mode. To understand the dynamics further, we will need to use
the results of the global analysis in McDonald and Namachchivaya (2005).

5.4. Full equations of motion

Finally, we look at the most general form of the equations of motion. Thus, we consider the nonlinear system with
forcing, and with both linear and nonlinear damping. These equations are the most difficult to analyze, so we will not be
able to do much analytically. We will, however, show some numerical results for several cases. The stability results of
the previous section, for the forced system with only linear damping, are still valid. The nonlinear damping only affects
the primary bifurcation branches, their stability, and any multi-mode solutions.

Based on our previous results, we know the following.

(a) Second-mode solutions occur as a result of the subharmonic resonant forcing. Thus, we can expect second-mode
solutions for the full equations of motion.

(b) The addition of nonlinear damping allowed the first-mode solution in the unforced case to undergo a Hopf
bifurcation. Thus, the first-mode solution may have a Hopf bifurcation for the forced system.

(c) The addition of nonlinear damping will may connect the two second-mode branches at some higher value of d.
These branches were parallel when the system had only linear damping.

As mentioned, the linear stability results are the same as for the forced case with linear damping only. Thus, we have
three bifurcation points of the trivial solution, leading to one first-mode solution and two second-mode solutions. The
order of the bifurcations is as described in Table 2.
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Fig. 13. Magnitude of response versus & for M, =0.7, T =0, { =0.01, x =2, h = 0.1, and 4 = 0.0.

5.4.1. First-mode solutions

Since the forcing is subharmonic, it only affects the second mode, and thus, the form of the first-mode branch is
unchanged from the unforced case discussed in Section 5.1. As before, we can also show that branch PS1 does not have
a simple bifurcation to the first mode for { < 1, but may have a Hopf bifurcation to the first or second mode. The Hopf
bifurcation to the first mode and second mode occur at the same points as those given in Section 5.1. Thus, the forcing
does not affect the presence of a Hopf bifurcation. The condition for a simple bifurcation to the second mode to occur is
much more complicated, and involves the forcing coefficient g4. We cannot solve this condition explicitly for J, so we
will not give this condition here. However, we may use AUTO97 (Doedel et al., 1997) to detect parameter values at
which the first-mode solution undergoes a simple bifurcation into the plane of the second mode.

5.4.2. Second-mode solutions

Again, we can find expressions for the second-mode solutions. These expressions become rather unwieldy for the
forced, nonlinearly damped problem, and it becomes rather difficult to answer stability questions for these branches.
Thus, we will only be able to examine these solutions numerically. As for the system with linear damping only, we
obtain two second-mode branches in the action-angle coordinates.

5.4.3. Multi-mode solutions
As for the second-mode solutions, any description of multi-mode solutions and their existence criteria will be
extremely complicated and long. Thus, we will only be able to study these solutions numerically.

5.5. Numerical results

Since it is difficult to analytically determine stability, bifurcation points, etc. for the full system (13) with forcing and
nonlinear damping, we rely on numerical tools, such as AUTO97 (Doedel et al., 1997). Although AUTO97 can only
provide bifurcation diagrams for specific sets of parameters, it is helpful in determining what kind of behavior can be
expected from the system. In these diagrams, stable solutions are shown with solid lines, unstable solutions with dotted
lines. Simple bifurcations are indicated by empty boxes, Hopf bifurcations by solid boxes. Periodic solutions are
indicated by circles, solid for stable solutions, and empty for unstable solutions.

Since we can only use AUTO97 to study the bifurcations for a specific set of parameters, it is difficult to understand
the complete bifurcation picture of the system. However, we can see the types of bifurcations that occur for various
parameter values. One example is given below.
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Fig. 15. Magnitude of response versus é for M, =0.7, T =0, {* =0.01, k =2, ¢ = 0.01, A =0.01, and 1 = —0.1.

Example for M, =0.7, T =0, {* =0.01, k =2, ¢ = 0.01, # = 0.01, and 1 = —0.1; see Figs. 15 and 16. In this case,
the two second-mode solutions bifurcate first from the trivial solution, one stable, the other unstable. These two
branches meet at a larger value of §. One first-mode solution also bifurcates from the trivial solution, and undergoes a
Hopf bifurcation. The periodic solution is initially stable, but has a limit point, at which the stability changes.

6. Conclusions

We can now summarize the results of the local bifurcation analysis. For the unforced case, there are no second-mode
solutions, and the first-mode solution becomes unstable near 6 = 0. The first mode corresponds to the eigenvalues near
zero in our original system, while the second mode corresponds to the eigenvalues that are far from zero on the
imaginary axis.

When we add forcing at the subharmonic resonance frequency, we add time-dependent terms to the equations of
motion. To study this system, we then made a time-dependent transformation that eliminates the explicit time
dependence from the equations of motion. This transformation also moves the eigenvalue pair that was far from zero
on the imaginary axis to the neighborhood of zero. If we had made this transformation for the unforced system, these
eigenvalues would simply pass at zero as o varied, due to the S'-symmetry of the second mode. However, the addition
of forcing breaks this symmetry, and hence the second mode can become unstable here. In fact, this behavior of the
second mode is similar to the behavior of our gyroscopic system as a whole: symmetry-breaking causes an instability in
the system, followed by a restabilization. Of course, the system cannot be restabilized if the first mode has already
become unstable.

The behavior of the nontrivial solutions for the pipe, that is, each of the primary bifurcations is supercritical. For the
system, there may be 0, 1, or 2 multi-mode solutions connecting the primary bifurcation branches, depending on the
magnitude of the detuning parameter 4.

Our final results for the full system show the importance of higher order terms in determining the local bifurcation
behavior. When we did not include nonlinear damping, the first-mode bifurcation branch only became unstable through
a simple bifurcation, creating a multi-mode solution that connected to a primary second-mode bifurcation branch.
When nonlinear damping terms were included, the first-mode branch became unstable through a Hopf bifurcation in
the numerical example studied. However, the earlier results are not meaningless, for they provide a good approximation
to the behavior for weakly damped systems. In addition, the presence of multi-mode solutions allows us to determine
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conditions under which energy transfer may occur from the high-frequency mode to the low-frequency mode. We will
obtain similar conditions in the global analysis McDonald and Namachchivaya (2005).

Appendix A. Equations of motion for pipe conveying fluid

The system we consider consists of a uniform pipe of length L, with internal perimeter S, mass per unit length m, and
flexural rigidity EI, which conveys an incompressible fluid with mass per unit length M flowing axially with velocity
U(t). The cross-sectional area 4 of the flow is assumed constant, and the fluid pressure is maintained at 5. The pipe,
although flexible, maintains its dimensions under the effects of internal pressure and frictional drag. When undeformed,
the axis of the pipe is aligned with the x-axis. Furthermore, we ignore the effects of gravity, assuming that the pipe is
nominally horizontal. We shall assume that the free motions of the pipe occur in one plane, the x — y plane, and we
further assume that the transverse motions y(x, t) are small. This system is shown in Fig. 17. Since we are interested in
the post-bifurcation behavior of this system, we must include nonlinear terms. Thus, we consider the first-order
nonlinearities introduced to Paidoussis and Issid’s model by Holmes (1977) and Namachchivaya and Tien (1989b).
These nonlinearities are due to the axial extension created by lateral motions of the pipe. Assuming Kelvin—Voigt
viscoelasticity for the pipe material, the equation of motion becomes

(E*%—i—E)Iy”—!—{MUz—I-M(Z—(tJ(L— - T. ——/ (/) dx _E4 / (y/y’)dx}
+2MUY + (M +m)j = 0.
For a simply supported pipe (pinned—pinned), the boundary conditions are
y=)"=0 atx=0,L,
while for the clamped—clamped pipe, the boundary conditions are given by
y=y =0 atx=0, L.

The boundary conditions for pinned—clamped pipes are easy to deduce.
A.1. Nondimensionalization

We then nondimensionalize the equation by using

X ¥ [ EI t M . TL?
== == — =\/=UL, T=
¢ o "=7 wE v EIU, L

M . E* I AL* E*A
M, = , B = k=0, .
m+ M L*\ E(m+ M) 21 VEI(M +m)

We also can write the nonlinear damping coefficient ¢ in terms of the coefficient x as

P i A ELVEM+m) _ g AL, o
" VEIM +m) \JEI(M +m) Vi o '

The nondimensional form of the equation is then

1 1
E*ﬁ’”+n'“+{ao—alc—x /0 ) dé - 6 /0 (n’ﬁ/)dé}n”+azi1’+ﬁ=0, (19)

x=0 x=L

Fig. 17. A horizontal pipe conveying fluid.
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where
ay=u>—T+Mau, a =M4a, a =2Mu. (20)

Eq. (19) is a PDE for the nondimensional vertical displacement of the pipe, n(£, t). We will use Galerkin’s method to
construct an ODE for each Fourier mode. Standard Galerkin-type projections allow us to approximate this by a more
tractable finite-dimensional system of dynamical systems. Suppose 7(&, 7) can be approximated by

&)=Y B(&)g(v), 1)
j=1

where @;(&) are eigenfunctions for the free undamped vibrations of a beam which satisfy the boundary conditions, and
¢;(v) is the time-dependent amplitude of the jth eigenfunction.
Using the orthogonality properties

/ldsdﬁdy =0 7=
i Ps AC .
o J #0 j=s

the relationships (obtained from integration by parts)

1 1 1 1
/ ds;i%psdé: / @] d¢, / /D, dE = — / S
0 ’ 0 ’ 0 ’ 0 ’

and defining
1 1
B=by= /0 POPEAE, C=cy= /0 (D) de,

1 1
D=dy= / RAGLYGEINr / (D8 de,
0 0
we obtain a pair of second-order finite-dimensional ODE:s for the time-dependent amplitude coefficients in matrix form

i+ (E"A+aB)q+ (A+a)C —aD)q+/(q,4) =0,

where A = diag {/l‘f, 23,...,24, and the cubic nonlinear terms are given by £(q, q).
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